某公司以每噸10萬元的價(jià)格銷售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷售數(shù)量將減少,該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷售的總金額最大?
50%

試題分析:根據(jù)銷售總金額等于每噸價(jià)格與銷售量的乘積,列函數(shù)關(guān)系式.當(dāng)價(jià)格上漲x%時(shí),銷售總金額為,這是一個(gè)關(guān)于x%的二次函數(shù),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044656263489.png" style="vertical-align:middle;" />對(duì)稱軸為時(shí),銷售總金額取最大值.
試題解析:由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷售總金額為y,則
(萬元)

當(dāng)x=50時(shí),萬元.
即該產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷售總金額最大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)任意的實(shí)數(shù),記,若,其中奇函數(shù)時(shí)有極小值是正比例函數(shù),函數(shù)與函數(shù)的圖象如圖所示,則下列關(guān)于函數(shù)的說法中,正確的是(   )
A.為奇函數(shù)
B.有極大值且有極小值
C.的最小值為且最大值為
D.上不是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是直線上的任意一點(diǎn),則的最小值為(   )
A.B.C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人在一次賽跑中,從同一地點(diǎn)出發(fā),路程S與時(shí)間t的函數(shù)關(guān)系如圖所示,則下列說法正確的是( 。
A.甲比乙先出發(fā)B.乙比甲跑的路程多
C.甲、乙兩人的速度相同D.甲比乙先到達(dá)終點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044918426279.png" style="vertical-align:middle;" />,當(dāng)時(shí),,且對(duì)任意的,等式成立,若數(shù)列滿足,且的值為(     )
A.4016B.4017C.4018D.4019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,CA=CB=1,為△ABC內(nèi)一點(diǎn),過點(diǎn)P分別引三邊的平行線,與各邊圍成以P為頂點(diǎn)的三個(gè)三角形(圖中陰影部分),則這三個(gè)三角形的面積和的最小值為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)集合={1,2,3,4,5},對(duì)任意和正整數(shù),記,其中,表示不大于的最大整數(shù),則=,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個(gè)命題:
的定義域是,值域是;
②點(diǎn)的圖像的對(duì)稱中心,其中;
③函數(shù)的最小正周期為;
④函數(shù)上是增函數(shù).
則上述命題中真命題的序號(hào)是            

查看答案和解析>>

同步練習(xí)冊(cè)答案