已知F1、F2是橢圓的兩個(gè)焦點(diǎn).△F1AB為等邊三角形,A,B是橢圓上兩點(diǎn)且AB過(guò)F2,則橢圓離心率是
3
3
3
3
分析:先利用橢圓的對(duì)稱性判斷F1F2為正三角形F1AB的AB邊上的高,再利用橢圓的定義,求得正三角形的邊長(zhǎng),進(jìn)而將焦距F1F2用邊長(zhǎng)表示,解得離心率e=
c
a
即可
解答:解:根據(jù)橢圓的對(duì)稱性知,一定有F1F2⊥AB
設(shè)橢圓的長(zhǎng)軸長(zhǎng)為2a,焦距為2c,
由橢圓定義知三角形F1AB的周長(zhǎng)為4a,故此三角形邊長(zhǎng)為
4a
3

∴正三角形F1AB的AB邊上的高F1F2=2c=
3
2
×
4a
3

∴橢圓離心率e=
c
a
=
3
3

故答案為
3
3
點(diǎn)評(píng):本題主要考查了橢圓的定義及其幾何性質(zhì),橢圓離心率的求法,利用已知三角形找到a、c間的等式是解決本題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若在橢圓上存在一點(diǎn)P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案