(04年廣東卷)(12分)

設(shè)函數(shù)

(I)證明:當(dāng)時,

(II)點(0<x0<1)在曲線上,求曲線上在點處的切線與軸,軸正向所圍成的三角形面積的表達(dá)式。(用表示)

解析:證明:(I)

故f(x)在(0,1上是減函數(shù),而在(1,+∞)上是增函數(shù),由0<a<b且f(a)=f(b)得0<a<1<b和

(II)0<x<1時,

曲線y=f(x)在點P(x0,y0)處的切線方程為:

∴切線與x軸、y軸正向的交點為

故所求三角形面積聽表達(dá)式為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(05年廣東卷)(14分)

設(shè)函數(shù)上滿足,且在閉區(qū)間[0,7]上,只有

(Ⅰ)試判斷函數(shù)的奇偶性;

(Ⅱ)試求方程在閉區(qū)間上的根的個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年廣東卷)(12分)

設(shè)函數(shù),其中常數(shù)為整數(shù)

(I)當(dāng)為何值時,

(II)定理:若函數(shù)上連續(xù),且異號,則至少存在一點,使得

試用上述定理證明:當(dāng)整數(shù)時,方程內(nèi)有兩個實根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修1-1 3.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用練習(xí)卷(解析版) 題型:解答題

(2006年廣東卷)設(shè)函數(shù)分別在處取得極小值、極大值.平面上點A、B的坐標(biāo)分別為,該平面上動點P滿足,點Q是點P關(guān)于直線的對稱點

求:(Ⅰ)點A、B的坐標(biāo) ;

(Ⅱ)動點Q的軌跡方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年廣東卷)設(shè)函數(shù)處連續(xù),則

(A)          (B)                 (C)                   (D)

查看答案和解析>>

同步練習(xí)冊答案