【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺舉辦的聽曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對,則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對歌名的概率是,乙猜對歌名的概率是,丙猜對歌名的概率是,甲、乙、丙猜對與否互不影響.
(I)求該小組未能進(jìn)入第二輪的概率;
(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為曲線上任意一點(diǎn),且到定點(diǎn)的距離比到軸的距離多1.
(1)求曲線的方程;
(2)點(diǎn)為曲線上一點(diǎn),過點(diǎn)分別作傾斜角互補(bǔ)的直線, 與曲線分別交于, 兩點(diǎn),過點(diǎn)且與垂直的直線與曲線交于, 兩點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 上頂點(diǎn)為,右頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓: 與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線: ()與橢圓相交于兩不同點(diǎn),若橢圓上一點(diǎn)滿足,求面積的最大值及此時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由;
(Ⅱ)記,討論的單調(diào)性;
(Ⅲ)若在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的:從道物理題中隨機(jī)抽取道;從道化學(xué)題中隨機(jī)抽取道;從道生物題中隨機(jī)抽取道.使用合適的方法確定這個(gè)學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為,化學(xué)題的編號為,生物題的編號為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,
(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com