精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x+log3
x+2
a-x
為奇函數.
(1)求實數a的值;
(2)函數g(x)的圖象由函數f(x)的圖象先向右平移2個單位,再向上平移2個單位得到,寫出g(x)的對稱中心坐標,若g(b)=1,求g(4-b)的值;
(3)若(2)中g(x)的圖象與直線x=1,x=3及x軸所圍成的封閉圖形的面積為S,求S的值.
(1)因為f(x)為奇函數,所以f(-x)=-f(x)對定義域內一切x均成立且函數的定義域關于原點對稱.
方法一:由題意可得,
x+2
a-x
>0
,結合奇函數的定義域關于原點對稱性可得a=2(4分)
方法二:一般式方法,-x+log3
-x+2
a+x
=-x-log3
x+2
a-x
x2-a2=x2-4,得到a=2(4分)
(2)由(1)可知,函數f(x)關于原點(0,0)對稱 (5分)
則函數g(x)的對稱中心為P(2,2)(7分)
所以 g(x)+g(4-x)=4(9分)
當g(b)=1時,g(4-b)=4-g(b)=3(11分)
(3)f(1)=1+log3
1
3
=0
,f(3)=3+log33=4(14分)
由對稱性可知,函數y=g(x)的圖象與直線x=1,x=3及x軸所圍成封閉圖形的面積S
S=
1
2
×(3-1)×4=4
(16分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x-2m2+m+3(m∈Z)為偶函數,且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022

已知函數f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題

已知函數f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數,g(x)是奇函數,則f(x)+g(x)是奇函數
B.f(x)是偶函數,g(x)是偶函數,則f(x)+g(x)是偶函數
C.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)一定是奇函數或偶函數
D.f(x)是奇函數,g(x)是偶函數,則f(x)+g(x)可以是奇函數或偶函數

查看答案和解析>>

同步練習冊答案