【題目】已知公比不為1的等比數(shù)列{an}的前5項(xiàng)積為243,且2a3為3a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=bn﹣1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項(xiàng)和Sn .
【答案】
(1)解:由前5項(xiàng)積為243,即為a1a2a3a4a5=243,
即有a1a5=a2a4=a32,即a35=243,
得:a3=3,設(shè)等比數(shù)列的公比為q,
由2a3為3a2和a4的等差中項(xiàng)得:4a3=3a2+a4,
即 ,
由公比不為1,解得:q=3,
所以an=a3qn﹣3,
即
(2)解:由bn=bn﹣1log3an+2=bn﹣1n,
得 ,
數(shù)列 ,
所以它的前n項(xiàng)和 .
【解析】(1)運(yùn)用等比數(shù)列的性質(zhì)可得a3=3,設(shè)等比數(shù)列的公比為q,運(yùn)用等差數(shù)列中項(xiàng)的性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式,解得q=3,即可得到所求數(shù)列{an}的通項(xiàng)公式;(2)求得bn=bn﹣1log3an+2=bn﹣1n,運(yùn)用數(shù)列恒等式bn=b1 … =n!,求出 ,運(yùn)用裂項(xiàng)相消求和即可得到所求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2),若f(2)=1
(1)求a的值;
(2)求f(3 )的值;
(3)解不等式f(x)<f(x+2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;
(Ⅱ)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
(1函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過定點(diǎn)(1,0);
(2化簡2 +lg5lg2+(lg2)2﹣lg2的結(jié)果為25;
(3若loga <1,則a的取值范圍是(1,+∞);
(4若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號(hào)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在 上無零點(diǎn),求a的最小值;
(Ⅲ)若對(duì)任意給定的x0∈(0,e],在(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|< )的最小正周期為π,且圖象上有一個(gè)最低點(diǎn)為M( ,﹣3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在[0,π]的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿場(chǎng)售價(jià)與上市時(shí)間的關(guān)系如圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系如圖二的拋物線段表示.
(1)寫出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式p=f(t);寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)各種植成本的單位:元/102㎏,時(shí)間單位:天)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中正確的有
①函數(shù)y= 的定義域是{x|x≠0};
②lg =lg(x﹣2)的解集為{3};
②31﹣x﹣2=0的解集為{x|x=1﹣log32};
④lg(x﹣1)<1的解集是{x|x<11}.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com