(2012•貴陽(yáng)模擬)直線x-2y+1=0關(guān)于直線x=3對(duì)稱(chēng)的直線方程為
x+2y-7=0
x+2y-7=0
分析:先求出對(duì)稱(chēng)直線的斜率,直線x-2y+1=0與直線x=3的交點(diǎn)坐標(biāo),再由點(diǎn)斜式求得 對(duì)稱(chēng)直線的方程.
解答:解:∵直線x-2y+1=0關(guān)于直線x=3對(duì)稱(chēng),所以對(duì)稱(chēng)直線的斜率為-
1
2

再由直線x-2y+1=0與直線x=3的交點(diǎn)為(3,2),
∴對(duì)稱(chēng)直線的方程為 y-2=-
1
2
(x-3),即 x+2y-7=0,
故答案為 x+2y-7=0.
點(diǎn)評(píng):本題考查直線關(guān)于直線的對(duì)稱(chēng)直線方程的求法,注意對(duì)稱(chēng)軸方程的特殊性是本題解答的關(guān)鍵,考查靈活運(yùn)用基本知識(shí)的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)若對(duì)于任意實(shí)數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
32
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)若函數(shù)f(x)定義域?yàn)镽,滿(mǎn)足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱(chēng)f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域?yàn)镽,g(x)恒大于0,且對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱(chēng)g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否為V形函數(shù),并說(shuō)明理由;
(2)當(dāng)g(x)=x2+2時(shí),證明:g(x)是對(duì)數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿(mǎn)足對(duì)任意x∈R,有f(x)≥2,問(wèn)f(x)是否為對(duì)數(shù)V形函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)若實(shí)數(shù)a、b、m滿(mǎn)足2a=5b=m,且
2
a
+
1
b
=2
,則m的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案