已知是實(shí)數(shù),函數(shù).
⑴求函數(shù)f(x)的單調(diào)區(qū)間;
⑵設(shè)g(x)為f(x)在區(qū)間上的最小值.
(i)寫出g(a)的表達(dá)式;(ii)求的取值范圍,使得.
(1)有單調(diào)遞減區(qū)間,單調(diào)遞增區(qū)間;
(2):(i)(ii)的取值范圍為.
.⑴解:函數(shù)的定義域?yàn)?img width=52 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/112/389912.gif">,()
若,則,有單調(diào)遞增區(qū)間.
若,令,得,
當(dāng)時(shí),,
當(dāng)時(shí),.
有單調(diào)遞減區(qū)間,單調(diào)遞增區(qū)間.
⑵解:(i)若,在上單調(diào)遞增,所以.
若,在上單調(diào)遞減,在上單調(diào)遞增,
所以.
若,在上單調(diào)遞減,所以.
綜上所述,
(ii)令.若,無解.
若,解得.)
若,解得.
故的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年廣東卷) (l4分)已知是實(shí)數(shù),函數(shù).如果函數(shù)在區(qū)間上有零點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分l4分)
已知是實(shí)數(shù),函數(shù).如果函數(shù)
在區(qū)間上有零點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是實(shí)數(shù),函數(shù),和,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱和在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)和在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)且,若函數(shù)和在以為端點(diǎn)的開區(qū)間上單調(diào)性一致,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省泰安市高三12月質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是實(shí)數(shù),函數(shù)。
(Ⅰ)若,求的值及曲線在點(diǎn)處的切線方程;
(Ⅱ)求在區(qū)間上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三第一次質(zhì)量檢測理科數(shù)學(xué)卷 題型:解答題
(滿分12分)
已知是實(shí)數(shù),函數(shù).
(Ⅰ)若,求的值及曲線在點(diǎn)處的切線方程;
(Ⅱ)求在區(qū)間上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com