若動直線x=a與函數(shù)f(x)=sin x和g(x)=cos x的圖象分別交于M、N兩點,則|MN|的最大值為
 
分析:設x=a與f(x)=sinx的交點為M(a,y1),x=a與g(x)=cosx的交點為N(a,y2),
求出|MN|的表達式,利用三角函數(shù)的有界性,求出最大值.
解答:解:設x=a與f(x)=sinx的交點為M(a,y1),
x=a與g(x)=cosx的交點為N(a,y2),
則|MN|=|y1-y2|=|sina-cosa|
=
2
|sin(a-
π
4
)|≤
2

故答案為:
2
點評:本題考查三角函數(shù)的圖象與性質,在解決三角函數(shù)周期等問題時,我們往往構造函數(shù),利用函數(shù)的圖象解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若動直線x=a與函數(shù)f(x)=sinx和g(x)=cosx的圖象分別交于M,N兩點,則|MN|的最大值為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動直線x=a與函數(shù)f(x)=
3
sin(x+
π
6
)
g(x)=cos(x+
π
6
)
的圖象分別交于M、N兩點,則|MN|的最大值為( 。
A、
3
B、1
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動直線x=a與函數(shù)f(x)=sin(x+
π
6
)+sin(x-
π
6
)和g(x)=cosx的圖象分別交于M,N兩點,則|
MN
|的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動直線x=a與函數(shù)f(x)=
3
sin(x+
π
12
)
g(x)=cos(x+
π
12
)
的圖象分別交于M、N兩點,則|MN|的最大值為( 。
A、
3
B、1
C、2
D、3

查看答案和解析>>

同步練習冊答案