【題目】設(shè)函數(shù)y=f (x)的定義域?yàn)镈,如果存在非零常數(shù)T,對(duì)于任意 x∈D,都有f(x+T)=Tf (x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f( x)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為﹣1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號(hào)是 . (寫(xiě)出所有滿足條件的命題序號(hào))

【答案】①④
【解析】解:①∵似周期函數(shù)”y=f(x)的“似周期”為﹣1,∴f(x﹣1)=﹣f(x),
∴f(x﹣2)=﹣f(x﹣1)=f(x),
故它是周期為2的周期函數(shù),
故正確;
②若函數(shù)f(x)=x是“似周期函數(shù)”,則f(x+T)=Tf (x),
即x+T=Tx恒成立;
故(T﹣1)x=T恒成立,
上式不可能恒成立;
故錯(cuò)誤;
③若函數(shù)f(x)=2x是“似周期函數(shù)”,則f(x+T)=Tf (x),
即2x+T=T2x恒成立;
故2T=T成立,無(wú)解;
故錯(cuò)誤;
④若函數(shù)f(x)=cosωx是“似周期函數(shù)”,則f(x+T)=Tf (x),
即cos(ω(x+T))=Tcosωx恒成立;
故cos(ωx+ωT)=Tcosωx恒成立;
即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,
,
故ω=kπ,k∈Z;
故正確;
所以答案是:①④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直棱柱ABC-中,DE分別是AB,BB1的中點(diǎn),=AC=CB=AB.

)證明://平面;

)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x),y=g(x)的值域均為R,有以下命題:
①若對(duì)于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對(duì)于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實(shí)數(shù)a,使得f[g(a)]=a成立,且對(duì)于任意x∈R都有g(shù)[f(x)]=x2﹣x+1成立,則存在唯一實(shí)數(shù)x0 , 使得g(ax0)=1,f(x0)=a.
④若存在實(shí)數(shù)x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),則x0=y0
其中是真命題的序號(hào)是 . (寫(xiě)出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)物園需要用籬笆圍成兩個(gè)面積均為50 的長(zhǎng)方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動(dòng)空間,垂直于墻的邊長(zhǎng)不小于2m,每個(gè)長(zhǎng)方形平行于墻的邊長(zhǎng)也不小于2m

1)設(shè)所用籬笆的總長(zhǎng)度為l,垂直于墻的邊長(zhǎng)為x.試用解析式將l表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;

2)怎樣圍才能使得所用籬笆的總長(zhǎng)度最小?籬笆的總長(zhǎng)度最小是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=a(a∈R),an+1= ,n∈N*;
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a=5,求S2016;
(3)若a= (m∈N*),求S4m+2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

點(diǎn)睛:在解決等差、等比數(shù)列的運(yùn)算問(wèn)題時(shí),有兩個(gè)處理思路,一是利用基本量,將多元問(wèn)題簡(jiǎn)化為一元問(wèn)題,雖有一定量的運(yùn)算,但思路簡(jiǎn)潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問(wèn)題既快捷又方便的工具,應(yīng)有意識(shí)地去應(yīng)用.但在應(yīng)用性質(zhì)時(shí)要注意性質(zhì)的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問(wèn)題時(shí),經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.

型】單選題
結(jié)束】
8

【題目】在數(shù)列{ }中,已知,,,則等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,進(jìn)而求得qa1,根據(jù){an}為正項(xiàng)等比數(shù)列推知{bn}為等差數(shù)列,進(jìn)而得出數(shù)列bn的通項(xiàng)公式和前n項(xiàng)和,可知Sn的表達(dá)式為一元二次函數(shù),根據(jù)其單調(diào)性進(jìn)而求得Sn的最大值.

由題意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,則a1q2=1018,a1q5=1012,

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}為正項(xiàng)等比數(shù)列,

∴{bn}為等差數(shù)列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=,∵nN*,故n=1112時(shí),(Snmax=132.

故答案為:C.

【點(diǎn)睛】

這個(gè)題目考查的是等比數(shù)列的性質(zhì)和應(yīng)用;解決等差等比數(shù)列的小題時(shí),常見(jiàn)的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質(zhì)解決題目;還有就是如果題目中涉及到的項(xiàng)較多時(shí),可以觀察項(xiàng)和項(xiàng)之間的腳碼間的關(guān)系,也可以通過(guò)這個(gè)發(fā)現(xiàn)規(guī)律。

型】單選題
結(jié)束】
12

【題目】已知數(shù)列是遞增數(shù)列,且對(duì),都有,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,且的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。

【答案】.

【解析】

設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,運(yùn)用等差中項(xiàng)和等比中項(xiàng)的定義,利用等差數(shù)列的求和公式,代入可求a1,d,解方程可求通項(xiàng)an

設(shè)等差數(shù)列{an}的首項(xiàng),公差為,則通項(xiàng)為,

項(xiàng)和為,依題意有,

其中,由此可得,

整理得, 解方程組得,

由此得;或.

經(jīng)檢驗(yàn)均合題意.

所以所求等差數(shù)列的通項(xiàng)公式為.

【點(diǎn)睛】

本題主要考查了等差數(shù)列的通項(xiàng)公式和性質(zhì)及等比數(shù)列中項(xiàng)的性質(zhì),數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用。

型】解答
結(jié)束】
20

【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

(1)anbn

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍(
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0

查看答案和解析>>

同步練習(xí)冊(cè)答案