[2012·安徽高考]設平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的(  )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
A
若α⊥β,因為α∩β=m,b?β,b⊥m,所以根據(jù)兩個平面垂直的性質(zhì)定理可得b⊥α,又a?α,所以a⊥b;反過來,當a∥m時,因為b⊥m,一定有b⊥a,但不能保證b⊥α,所以不能推出α⊥β.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知側(cè)棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
點F為棱BB1的中點,點M為線段AC1的中點.
(1)求證: MF∥平面ABCD
(2)求證:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:;
(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點,
(1)證明:;
(2)證明:;
(3)假設這是個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會有被捕的危險,求魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知長方形中,, ,的中點.將沿折起,使得平面平面
(1)求證:; 
(2)若點是線段的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,,點分別為、的中點.
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知為平行四邊形,,,,點上,,相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.
(1)求證:平面
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2014·福州質(zhì)檢]對于平面α和共面的直線m,n,下列命題是真命題的是(  )
A.若m,n與α所成的角相等,則m∥n
B.若m∥α,n∥α,則m∥n
C.若m⊥α,m⊥n,則n∥α
D.若m?α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是兩個不同的平面,是平面之外的兩條不同直線,給出四個論斷:
  ②  ③  、。 以其中三個論斷作為條件,余下一個論斷作為結(jié)論,寫出你認為正確的一個命題:________________________________.

查看答案和解析>>

同步練習冊答案