(2010•江蘇模擬)設實數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
u=
y2-x2
xy
的取值范圍是
[-
8
3
,
3
2
]
[-
8
3
,
3
2
]
分析:先根據(jù)根的分布列出約束條件畫出可行域,再化簡u=
y
x
-
1
y
x
,設z'=
y
x
最后利用幾何意義求最值,本例中
y
x
的取值的幾何意義是斜率.
解答:解:作出可行域,如圖
u=
y
x
-
1
y
x
,設z'=
y
x

當把z'看作常數(shù)時,它表示直線y=z'x的斜率,
因此,當直線y=z'x過點A時,z最大;
當直線y=z'x過點B時,z最。
由y=2,x+2y-5=0,得A(1,2).
由x+2y-5=0,x-y-2=0,得B(3,1).
∴z'max=2,zmin=
1
3

故z'的取值范圍是[
1
3
,2].
∴u=
y
x
-
1
y
x
是關于z'=
y
x
單調(diào)增函數(shù),它的取值范圍為[-
8
3
,
3
2
].
故答案為:[-
8
3
,
3
2
].
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•江蘇模擬)某學生對函數(shù)f(x)=2x•cosx的性質(zhì)進行研究,得出如下的結論:
①函數(shù)f(x)在[-π,0]上單調(diào)遞增,在[0,π]上單調(diào)遞減;
②點(
π2
,0)
是函數(shù)y=f(x)圖象的一個對稱中心;
③函數(shù)y=f(x)圖象關于直線x=π對稱;
④存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)x均成立.
其中正確的結論是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江蘇模擬)將復數(shù)
1+2i
3+i3
表示為a+bi(a,b∈R,i為虛數(shù)單位)的形式為
1
10
+
7
10
i
1
10
+
7
10
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江蘇模擬)在標有數(shù)字1,2,3…,10,11,12的12張大小相同的卡片中,依次取出不同的三張卡片它們的數(shù)字和恰好是3的倍數(shù)的概率是
19
55
19
55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江蘇模擬)已知直線(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交;并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

同步練習冊答案