(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面, E、F分別為的中點(diǎn),

(Ⅰ)求證:平面平面
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
(Ⅰ)先證得
再證得.由,證出平面,所以,平面平面
(Ⅱ)平面與平面所成的銳二面角的余弦值為

試題分析:(Ⅰ)∵四邊形是菱形,

中,,,

,即
,   ∴.…………………2分
平面平面,
.又∵,
平面,………………………………………4分
又∵平面,
平面平面.  ………………………………6分
(Ⅱ)解法一:由(1)知平面,而平面
∴平面平面 ………………………7分
平面,∴
由(Ⅰ)知,又
平面,又平面,
∴平面平面.…………………………9分
∴平面是平面與平面的公垂面.
所以,就是平面與平面所成的銳二面角的平面角.……10分
中,,即.……………11分


所以,平面與平面所成的銳二面角的余弦值為.…………14分

理(Ⅱ)解法二:以為原點(diǎn),、分別為軸、軸的正方向,建立空間直角坐標(biāo)系,如圖所示.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003521864560.png" style="vertical-align:middle;" />,,所以,
、、、,…………7分
,,.………8分
由(Ⅰ)知平面
故平面的一個(gè)法向量為.……………………9分
設(shè)平面的一個(gè)法向量為,
 ,即,令,
.    …………………11分

所以,平面與平面所成的銳二面角的余弦值為.……14分
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,本題解法較多二應(yīng)用向量則簡(jiǎn)化了證明過(guò)程。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在三棱錐中,是直角三角形,,,點(diǎn)分別為的中點(diǎn)。

⑴求證:;
⑵求直線與平面所成的角的大。
⑶求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩個(gè)不同的平面,能判定//的條件是(    )
A.、分別平行于直線B.、分別垂直于直線
C.、分別垂直于平面D.內(nèi)有兩條直線分別平行于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在正四棱錐S-ABCD中,的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持.則動(dòng)點(diǎn)的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,棱長(zhǎng)為2的正方體中,E,F滿足

(Ⅰ)求證:EF//平面AB
(Ⅱ)求證:EF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點(diǎn)E恰與BC上的點(diǎn)P重合.設(shè),,,則當(dāng)__時(shí),有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l垂直平面a,垂足為O.在矩形ABCD中AD=1,AB=2,若點(diǎn)A在l上移動(dòng),點(diǎn) B在平面a上移動(dòng),則O、D兩點(diǎn)間的最大距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)三棱錐中,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若,且異面直線的夾角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,且平面⊥底面

(1)求證:⊥平面
(2)求直線與底面所成角的余弦值;
(3)設(shè),求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案