精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,不等式組
x+y≥0
x-y≥0
x≤a
(a為常數)表示的平面區(qū)域的面積8,則x2+y的最小值(  )
A、-
1
4
B、0
C、12
D、20
分析:先在平面直角坐標系中,畫出滿足不等式組的
x+y≥0
x-y≥0
x≤a
(a為常數),表示的平面區(qū)域,再由Z=x2+y中Z表示曲線y=-x2+Z,與y軸交點的縱坐標,利用圖象易得到答案.
解答:解:滿足約束條件
x+y≥0
x-y≥0
的可行域如下圖所示,
精英家教網
若可行域的面積為8,則a=2
2

由圖可得當x=
1
2
,y=-
1
2
時,
x2+y取最小值-
1
4
,
故選A
點評:本題考查的知識點是簡單線性規(guī)劃,其中畫出約束條件對應的可行域是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數,就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經過任何整點
②如果k與b都是無理數,則直線y=kx+b不經過任何整點
③直線l經過無窮多個整點,當且僅當l經過兩個不同的整點
④直線y=kx+b經過無窮多個整點的充分必要條件是:k與b都是有理數
⑤存在恰經過一個整點的直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,下列函數圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案