如n是不小于3的自然數(shù),以f(n)表示不是n的因數(shù)的最小自然數(shù)(例如f(12)=5).如果f(n)≥3,又可作f(f(n)).類似地,如果f(f(n))≥3,又可作f(f(f(n)))

果用Ln表示n的長度,試對任意的自然數(shù)n(n≥3),求Ln并證明你的結論.

解析:很明顯,若奇數(shù)n≥3,那么f(n)=2,因此只須討論n為偶數(shù)的情況,我們首先證明,對任何n≥3,f(n)=ps,這里P是素數(shù),s為正整數(shù).假若不然,若f(n)有兩個不同的素因子,這時總可以將f(n)表為f(n)=ab,其中a、b是大于1的互素的正整數(shù).由f的定義知,a與b都應能整除n,因(a,b)=1,故ab也應整除n,這與f(n)=ab矛盾.所以f(n)=ps

由此可以得出以下結論:

(1)當n為大于1的奇數(shù)時,f(n)=2,故Ln=1;

(2)設n為大于2的偶數(shù),如果f(n)=奇數(shù),那么f(f(n))=2,這時Ln=2;如果f(n)=2s,其中自然數(shù)s≥2,那么f(f(n))=f(2s)=3,從而f(f(f(n)))=f(3)=2,這時Ln=3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知n是不小于3的正整數(shù),an=
n
k=1
k
C
k
n
,bn=
n
k=1
k2
C
k
n

(1)求an,bn;
(2)設cn=
an
bn
,求證:
n
k=1
(ckck+1)<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3…in) (n是不小于3的正整數(shù)),對于任意的p,q∈{1,2,3,…,n},當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于
 
;若數(shù)組(i1,i2,i3,…,in)中的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)中的逆序數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淄博一模)對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對任意的p,q∈{1,2,3…,n},當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”.一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,3,1)的逆序數(shù)等于2,若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
n2-3n
2
n2-3n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對任意的p,q∈{1,2,3,…,n},當p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”.一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,如數(shù)組(2,3,1)的逆序數(shù)等于2.則數(shù)組(5,2,4,3,1)的逆序數(shù)等于
8
8
;若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
n2-3n
2
n2-3n
2

查看答案和解析>>

同步練習冊答案