設(shè)Sn是各項均為非零實數(shù)的數(shù)列{an}的前n項和,給出如下兩個命題上:命題p:{an}是等差數(shù)列;命題q:等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
對任意n(n∈N*)恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對于(1)中的k與b,問p是否為q的必要條件,請說明理由;
(3)若p為真命題,對于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件
a21
+
a2n+1
≤M
,試求Sn的最大值.
(1)設(shè){an}的公差為d,則原等式可化為
1
d
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1
)=
kn+b
a1an+1

所以
1
d
nd
a1an+1
=
kn+b
a1an+1
,
即(k-1)n+b=0對于n∈N*恒成立,所以k=1,b=0.…(4分)
(2)當(dāng)k=1,b=0時,假設(shè)p是q的必要條件,即“若
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
n
a1an+1
①對于任意的n(n∈N*)恒成立,則{an}為等差數(shù)列”.
當(dāng)n=1時,
1
a1a2
=
1
a1a2
顯然成立.…(6分)
當(dāng)n≥2時,若
1
a1a2
+
1
a2a3
+…+
1
an-1an
=
n-1
a1an+1
②,
由①-②得,
1
anan+1
=
1
a1
n
an+1
-
n-1
an
),即nan-(n-1)an+1=a1③.
當(dāng)n=2時,a1+a3=2a2,即a1、a2、a3成等差數(shù)列,
當(dāng)n≥3時,(n-1)an-1-(n-2)an=a1④,即2an=an-1+an+1.所以{an}為等差數(shù)列,即p是q的必要條件.…(10分)
(3)由
a21
+
a2n+1
≤M,可設(shè)a1=rcosθ,an+1=rsinθ,所以r≤
M

設(shè){an}的公差為d,則an+1-a1=nd=rsinθ-rcosθ,
所以d=
rsinθ-rcosθ
n

所以an=rsinθ-
rsinθ-rcosθ
n
,
Sn=
(a1+an)n
2
=
(n+1)cosθ+(n-1)sinθ
2
r≤
(n+1)2+(n-1)2
2
M
=
2
2
M(n2+1)

所以Sn的最大值為
2
2
M(n2+1)
…(16分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城二模)設(shè)Sn是各項均為非零實數(shù)的數(shù)列{an}的前n項和,給出如下兩個命題上:命題p:{an}是等差數(shù)列;命題q:等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
對任意n(n∈N*)恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對于(1)中的k與b,問p是否為q的必要條件,請說明理由;
(3)若p為真命題,對于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件
a
2
1
+
a
2
n+1
≤M
,試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

設(shè)Sn是各項均為非零實數(shù)的數(shù)列{an}的前n項和,給出如下兩個命題上:命題p:{an}是等差數(shù)列;命題q:等式對任意n(n∈N*)恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對于(1)中的k與b,問p是否為q的必要條件,請說明理由;
(3)若p為真命題,對于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件,試求Sn的最大值.

查看答案和解析>>

同步練習(xí)冊答案