已知二次函數(shù)

   (1)若方程有兩個(gè)相等的實(shí)數(shù)根,求的解析式;

 (2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍

 

【答案】

方程有兩個(gè)相等的實(shí)數(shù)根,而,

    所以判別式△=,即

    解得(舍去),或=-1,代入①式得……5分

   (Ⅱ)

    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052523040438335983/SYS201205252305229135692654_DA.files/image009.png">在區(qū)間內(nèi)單調(diào)遞減,

    所以當(dāng)時(shí)恒成立……7分

    ∵,對稱軸為直線上為增函數(shù),

    故只需……8分

    注意到,解得(舍去)。故的取值范圍是

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+λx在定義域N*內(nèi)單調(diào)遞增,則實(shí)數(shù)λ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),滿足:對任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤
1
8
(x+2)2
成立,又f(-2)=0,則b為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(第三、四層次學(xué)校的學(xué)生做次題)
已知二次函數(shù)h(x)=ax2+bx+c(c>0),其導(dǎo)函數(shù)y=h′(x)的圖象如下,且f(x)=lnx-h(x).
(1)求a,b的值;
(2)若函數(shù)f(x)在(
1
2
,m+
1
4
)
上是單調(diào)遞減函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)y=2x-lnx(x∈[1,4])的圖象總在函數(shù)y=f(x)的圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),且f′(x)=2x+1,數(shù)列{an}的前n項(xiàng)和Sn=f(n)(n∈N*)
(1)求數(shù)列y=f(x)的解析式;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+b,若關(guān)于x的不等式f(x)<0的解集為{x|2<x<6}.
(1)求f(x)的解析式;
(2)若x>0時(shí),不等式f(x)-mx>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案