【題目】有兩直線,當a在區(qū)間內變化時,求直線與兩坐標軸圍成的四邊形面積的最小值.

【答案】.

【解析】

利用直線方程,求出相關點的坐標,利用直線系解得yE=2.根據S四邊形OCEASBCESOAB即可得出.

∵0<a<2,

可得l1ax﹣2y=2a﹣4,與坐標軸的交點A(0,﹣a+2),B(2,0).

l2:2x﹣(1﹣a2y﹣2﹣2a2=0,與坐標軸的交點Ca2+1,0),D(0,).

兩直線ax﹣2y﹣2a+4=02x﹣(1﹣a2y﹣2﹣2a2=0,都經過定點(2,2),即yE=2.

S四邊形OCEASBCESOAB

|BC|yE|OA||OB|

a21)×2(2﹣a)×(2)

a2a+3

=(a2,當a時取等號.

l1,l2與坐標軸圍成的四邊形面積的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是平行四邊形, , , 平面.

(1)為棱的中點,求證: 平面;

(2)求證: 平面平面;

(3)若, ,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)yfx)的定義域為R,并且滿足fx+y)=fx)+fy),f)=1,當x>0時,fx)>0.

(1)求f(0)的值;

(2)判斷函數(shù)的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線 ,已知過點的直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于、兩點.

(1)寫出曲線和直線的直角坐標方程.

(2)若, 成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組為了解學生每周用于體育鍛煉時間的情況,在甲、乙兩所學校隨機抽取了各50名學生,做問卷調查,并作出如下頻率分布直方圖:

(1)根據直方圖計算:兩所學校被抽取到的學生每周用于體育鍛煉時間的平均數(shù);
(2)在這100名學生中,要從每周用于體育鍛煉時間不低于10小時的學生中選出3人,該3人中來自乙學校的學生數(shù)記為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線)與軸交于點,動圓與直線相切,并且與圓相外切,

1)求動圓的圓心的軌跡的方程;

2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經過點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 (a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年1月1日起全國統(tǒng)一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后和80后作為調查對象,隨機調查了100位,得到數(shù)據如表:

生二胎

不生二胎

合計

70后

30

15

45

80后

45

10

55

合計

75

25

100


(1)以這100個人的樣本數(shù)據估計該市的總體數(shù)據,且以頻率估計概率,若從該市70后公民中隨機抽取3位,記其中生二胎的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望;
(2)根據調查數(shù)據,是否有90%以上的把握認為“生二胎與年齡有關”,并說明理由.
參考數(shù)據:

P(K2>k)

0.15

0.10

0.05

0.025

0.010

0.005

k

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點E、F分別為棱AB、PD的中點.

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

同步練習冊答案