設(shè)圓C位于拋物線y2=2x與直線x=3所圍成的封閉區(qū)域(包含邊界)內(nèi),則圓C的半徑能取到的最大值為__________
∵圓C位于拋物線y2=2x與直線x=3所圍成的封閉區(qū)域(包含邊界)內(nèi),
∴可設(shè)圓心C(a,0),其半徑為3-a
∴圓C之方程為(x-a)2+y2=(3-a)2
聯(lián)立拋物線與圓C之方程得:x2-2(a-1)x+6a-9=0
由題意知Δ=4(a-1)2-4(6a-9)=0a=4-
∴圓C的半徑能取到的最大值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開口向右,過焦點(diǎn)且垂直于拋物線對稱軸的弦長為2,過C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn).

(1)若直線PQ過定點(diǎn),求點(diǎn)A的坐標(biāo);
(2)對于第(1)問的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個數(shù);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)(2011•湖北)將兩個頂點(diǎn)在拋物線y2=2px(p>0)上,另一個頂點(diǎn)是此拋物線焦點(diǎn)的正三角形個數(shù)記為n,則(          )
A.n=0B.n=1C.n=2D.n≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(3,2), 點(diǎn)P是拋物線y2=4x上的一個動點(diǎn),F(xiàn)為拋物線的焦點(diǎn),求的最小值及此時P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A 的坐標(biāo)是(4,a),則當(dāng)時,的最小值是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在拋物線上,且點(diǎn)到直線的距離為,則點(diǎn) 的個數(shù)為 (  )   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離是(   )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線(k>0)與拋物線相交于A、B兩點(diǎn),的焦點(diǎn),若,則k的值為()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點(diǎn)N的坐標(biāo);
(2)是否存在一條直線l同時滿足下列條件:
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長為2.

查看答案和解析>>

同步練習(xí)冊答案