(2006北京朝陽模擬)如圖所示,已知圓,設M為圓Cx軸負半軸的交點,過M作圓C的弦MN,并使它的中點P恰好落在y軸上.

(1)r=2時,求滿足條件的P點的坐標;

(2)r(1,+∞)時,求點N的軌跡G的方程;

(3)過點P(0,2)的直線l(2)中軌跡G相交于兩個不同的點E、F,若,求直線l的斜率的取值范圍.

答案:略
解析:

解析:(1)解法一:由已知得,r=2時,可求得M點的坐標為M(1,0)

P(0,b),則由

(或用勾股定理)

b=±1,即點P坐標為(0,±1)

解法二:同上可得M(1,0)N(x,y),則

解得N(1,±2)

MN的中點P坐標為(0,±1)

(2)解法一:設N(x,y)

由已知得,在圓方程中令y=0,求得M點的坐標為(1r0)

P(0,b),則由

(或用)

∵點P為線段MN的中點,∴y=2b.又r1,

∴點N的軌跡方程為(x0)

解法二:設N(x,y),

同上可得M(1r0),則,消去r,又r1,

∴點N的軌跡方程為(x0)

(3)依題意得直線l的斜率存在且不為0,設直線l的方程為y=kx2,,

,得

由Δ=32k160,得

k0k<-12

k<-12


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:013

(2006北京朝陽模擬)下列函數(shù)中,最小正周期為π,且圖象關于直線對稱的是

[  ]

A

B

C

D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

(2006北京朝陽模擬)將直線繞原點按順時針方向旋轉30°,所得直線與圓的位置關系是

[  ]

A.直線與圓相離

B.直線與圓相交但不過圓心

C.直線與圓相切

D.直線過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

(2006北京朝陽模擬)已知函數(shù),1m2

(1)f(x)在區(qū)間[1,1]上的最大值為1,最小值為-2,求m、n的值;

(2)(1)條件下,求經(jīng)過點P2,1)且與曲線f(x)相切的直線l的方程;

(3)設函數(shù)f(x)的導函數(shù)為g(x),函數(shù),試判斷函數(shù)F(x)的極值點個數(shù),并求出相應實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

(2006北京朝陽模擬)如下圖,正方體中,E、F分別是棱BC的中點,則直線EF與直線所成角的大小是

[  ]

A45°

B60°

C75°

D90°

查看答案和解析>>

同步練習冊答案