已知橢圓(),其左、右焦點(diǎn)分別為,且、成等比數(shù)列.

(Ⅰ)若橢圓的上頂點(diǎn)、右頂點(diǎn)分別為、,求證:;

(Ⅱ)若為橢圓上的任意一點(diǎn),是否存在過(guò)點(diǎn)、的直線,使軸的交點(diǎn)滿(mǎn)足?若存在,求直線的斜率;若不存在,請(qǐng)說(shuō)明理由.

于是,故.      …………4分

(Ⅱ)由題設(shè),顯然直線垂直于軸時(shí)不合題意,     …………5分

設(shè)直線的方程為:,

,及,得點(diǎn)的坐標(biāo)為,  …………7分因?yàn)辄c(diǎn)在橢圓上,∴,又,得,                           …………9分

由題設(shè),得

,與矛盾,            …………11分

故不存在滿(mǎn)足題意的直線.              …………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓,過(guò)其左焦點(diǎn)且斜率為的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)?img width=92 height=19 src="http://thumb.zyjl.cn/pic1/1899/sx/87/25087.gif">(如圖),設(shè)

(1)求的解析式;

(2)求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省宿州市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市高三上學(xué)期第四次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓是其左頂點(diǎn)和左焦點(diǎn),是圓上的動(dòng)點(diǎn),若,則此橢圓的離心率是       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省蚌埠市2010年高三第三次質(zhì)檢數(shù)學(xué)試題(理科) 題型:填空題

已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年正定中學(xué)高二下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

(12分)已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程;

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案