已知圓心為C的圓經(jīng)過點(1,1)和(2,-2),且圓心C在直線l:x-y+1=0上.
(1)求圓心為C的圓的標準方程;
(2)已知點A是圓心為C的圓上動點,B(2,1),求|AB|的取值范圍.
(1)設(shè)圓心C(a,a+1),則
∵圓經(jīng)過點(1,1)和(2,-2),
∴(a-1)2+a2=(a-2)2+(a-3)2=r2
∴a=-3,r=5,
∴圓的標準方程為(x+3)2+(y+2)2=25;
(2)設(shè)A(-3+5cosα,-2+5sinα),則
∵B(2,1),
∴|AB|=
(5+5cosα)2+(3+5sinα)2
=
59+10
34
sin(α+θ)
,
∴|AB|的取值范圍為[
59-10
34
,
59+10
34
]
,即[
34
-5,
34
+5].
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸建立平面直角坐標系,直線L的參數(shù)方程是(t是參數(shù)).
(1)將曲線C的極坐標方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點,且,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

曲線上的動點是坐標為.
(1)求曲線的普通方程,并指出曲線的類型及焦點坐標;
(2)過點作曲線的兩條切線、,證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C (t為參數(shù)), C為參數(shù))。
(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點P對應(yīng)的參數(shù)為,Q為C上的動點,求中點到直線
  (t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;
(2)當時,求直線與圓O公共點的一個極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),曲線C2的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù))在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α與C1,C2各有一個交點.當α=0時,這兩個交點間的距離為2,當α=
π
2
時,這兩個交點重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設(shè)當α=
π
4
時,l與C1,C2的交點分別為A1,B1,當α=-
π
4
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(2,0),B(-1,
3
)
是圓x2+y2=4上的定點,經(jīng)過點B的直線與該圓交于另一點C,當△ABC面積最大時,直線BC的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,O是半徑為1的球的球心,點A、B、C在球面上,OA、OB、OC兩兩垂直,E、F分別為大圓弧AB與AC的中點,則E、F的球面距離是_____

查看答案和解析>>

同步練習冊答案