精英家教網 > 高中數學 > 題目詳情
條件p:x2<1,條件q:x<1,則¬p是¬q的
必要不充分
必要不充分
條件.(填“充要”,“充分不必要”,“必要不充分”或“既不充分又不必要”)
分析:先將條件p:x2<1,化簡為-1<x<1,從而可得q是p的必要不充分條件,根據逆否命題的等價性,可得結論.
解答:解:由題意,條件p:x2<1 等價于-1<x<1
∵x<1時,-1<x<1,不一定成立,而反之,-1<x<1時,x<1,一定成立
∴q是p的必要不充分條件
∴¬p是¬q的必要不充分條件
故答案為:必要不充分
點評:本題以 不等式為載體,考查四種條件,考查逆否命題的等價性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知條件p:x2+x+1≤0  條件q:x2+2x-3>0,則¬q是¬p 的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:x2-
y24
=1
,過點P(1,1)作直線l,使l與C有且只有一個公共點,則滿足上述條件的直線l共有
4
4
條.

查看答案和解析>>

科目:高中數學 來源:安徽省無為縣大江、開城中學2012屆高三上學期聯考數學文科試題 題型:013

已知條件p:x2+x+1≤0條件q:x2+2x-3>0,則

[  ]
A.

充要條件

B.

既不充分也不必要的條

C.

必要而不充分的條件

D.

充分而不必要的條件件

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知條件p:x2+x+1≤0 條件q:x2+2x-3>0,則¬q是¬p 的


  1. A.
    充要條件
  2. B.
    既不充分也不必要的條
  3. C.
    必要而不充分的條件
  4. D.
    充分而不必要的條件件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知條件p:x2+x+1≤0  條件q:x2+2x-3>0,則¬q是¬p 的( 。
A.充要條件B.既不充分也不必要的條
C.必要而不充分的條件D.充分而不必要的條件件

查看答案和解析>>

同步練習冊答案