若不等式對一切正整數(shù)n都成立,求正整數(shù)a的最大值,并用數(shù)學(xué)歸納法證明你的結(jié)論。

 

 

 

 

 

 

 

 

 

【答案】

 解  當n=1時,,

  即, ∴a<26,又a∈,∴取a=25,下面用數(shù)學(xué)歸納法證明:

  。……………………………………………………2分

 。1)當n=1時,已證。……………………………………………………4分

 。2)假設(shè)當n=k時,成立!6分

   則當n=k+1時,有

  

,……………………………………………………8分

  ∵,

  ∴也成立!10分

  由(1).(2)可知,對一切n∈N*,都有不等式成立。

  ∴a的最大值為25。…………………………………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式對一切正整數(shù)都成立,求正整數(shù)的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式對一切正整數(shù)都成立,求正整數(shù)的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

已知數(shù)列中,,, 為該數(shù)列的前項和,且.

(1)求數(shù)列的通項公式;

(2)若不等式對一切正整數(shù)都成立,求正整數(shù)的最大值,并證明結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題

(本小題滿分12分)

若不等式對一切正整數(shù)n都成立,求正整數(shù)a的最大值,并用數(shù)學(xué)歸納法證明你的結(jié)論。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若不等式數(shù)學(xué)公式對一切正整數(shù)n都成立,
(1)猜想正整數(shù)a的最大值,
(2)并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案