如圖所示,已知矩形ABCD中,AB=1,BC=a(a>0),PA⊥面ABCD.
(1)問(wèn)BC邊上是否存在點(diǎn)Q,使得PQ⊥QD,并說(shuō)明理由.
(2)若PA=1,且BC邊上有且只有一點(diǎn)Q,使得PQ⊥QD.求這時(shí)二面角Q-PD-A的大小.
(1)當(dāng)a=2時(shí),BC邊上有中點(diǎn),滿(mǎn)足PQ⊥QD.當(dāng)0<a<2時(shí),BC邊上不存在點(diǎn)Q,滿(mǎn)足PQ⊥QO. (2)所求二面角Q-PD-A的大小為arctan |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過(guò)P,Q兩點(diǎn).
(1)若直線(xiàn)QP與橢圓C的右準(zhǔn)線(xiàn)相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(2)當(dāng)梯形PABQ周長(zhǎng)最大時(shí),求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),E是B1C的中點(diǎn).
(1)求cos(,).
(2)在線(xiàn)段AA1上是否存在點(diǎn)F,使CF⊥平面B1DF?若存在,求出||;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,橢圓方程為+=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿(mǎn)足=(+),PF的延長(zhǎng)線(xiàn)與橢圓的交點(diǎn)為Q,過(guò)Q與x軸平行的直線(xiàn)與PN的延長(zhǎng)線(xiàn)交于M.
(1)求證:·=·.
(2)若=2,且||=,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,某電子器件是由三個(gè)電阻組成的回路,其中共有六個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通.
(1)求因焊接點(diǎn)脫落致使電路不通的所有不同的脫落種數(shù).
(2)每個(gè)焊接點(diǎn)脫落的概率均是,現(xiàn)在發(fā)現(xiàn)電路不通了,那么至少有兩個(gè)焊接點(diǎn)脫落的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007屆潛山中學(xué)理復(fù)(一、二)數(shù)學(xué)周考試卷 題型:044
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com