【題目】已知函數(shù)f(x)=2a4x﹣2x﹣1.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若f(x)有零點(diǎn),求a的取值范圍.
【答案】
(1)解:當(dāng)a=1時(shí),f(x)=24x﹣2x﹣1.
令f(x)=0,即2(2x)2﹣2x﹣1=0,
解得2x=1或 (舍去).
∴x=0,函數(shù)f(x)的零點(diǎn)為x=0
(2)解:若f(x)有零點(diǎn),則方程2a4x﹣2x﹣1=0有解,
于是2a= = = ,
∵ >0,2a =0,即a>0
【解析】(1)問題轉(zhuǎn)化為a=1時(shí)解方程f(x)=0;(2)f(x)有零點(diǎn),則方程2a4x﹣2x﹣1=0有解,分離出a后轉(zhuǎn)化為求函數(shù)的值域問題;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的零點(diǎn)與方程根的關(guān)系(二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)),還要掌握函數(shù)的零點(diǎn)(函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較下列各題中兩個(gè)數(shù)的大。
(1)log60.8,log69.1;
(2)log0.17,log0.19;
(3)log0.15,log2.35
(4)loga4,loga6(a>0,且a≠1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求f(0)的值;
(2)求證:對(duì)任意x∈R,都有f(x)>0;
(3)解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三角形中, 分別是邊上的點(diǎn),滿足 (如圖),將沿折起到的位置,使二面角成直二面角,連接 (如圖).
(1) 求證: 平面;
(2)求二面角的余弦值的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左頂點(diǎn)為,且橢圓與直線相切,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)為定義在R奇函數(shù),當(dāng)x>0時(shí),f(x)=﹣2x2+4x+1,
(1)求:當(dāng)x<0時(shí),f(x)的表達(dá)式;
(2)用分段函數(shù)寫出f(x)的表達(dá)式;
(3)若函數(shù)h(x)=f(x)﹣a恰有三個(gè)零點(diǎn),求a的取值范圍(只要求寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com