已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,y0)是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
7
2
,
PF1
PF2
=
3
4
(O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)過點(diǎn)S(0,-
1
3
)
且斜率為k的動直線l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出M的坐標(biāo),若不存在,說明理由.
分析:(1)設(shè)出P的坐標(biāo),利用|OP|的值求得x0和y0的關(guān)系式,同時(shí)利用
PF1
PF2
=
3
4
求得x0和y0的另一關(guān)系式,進(jìn)而求得c,通過橢圓的離心率求得a,最后利用a,b和c的關(guān)系求得b,則橢圓的方程可得.
(2)設(shè)出直線l的方程,與橢圓方程聯(lián)立消去y,設(shè)A(x1,y1),B(x2,y2),則可利用韋達(dá)定理表示出x1+x2和x1x2,假設(shè)在y軸上存在定點(diǎn)M(0,m),滿足題設(shè),則可表示出
MA
MB
,利用
MA
MB
=0求得m的值.
解答:解:(1)設(shè)P(x0,y0),F(xiàn)1(-c,0),F(xiàn)2(c,0),
則由|OP|=
7
2
x
2
0
+
y
2
0
=
7
4

PF1
PF2
=
3
4
(-c-x0,-y0)•(c-x0,-y0)=
3
4

x
2
0
+
y
2
0
-c2=
3
4

所以c=1
又因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
c
a
=
2
2
,所以a2=2,b2=1.
因此所求橢圓的方程為:
x2
2
+y2=1

(2)動直線l的方程為:y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
(2k2+1)x2-
4
3
kx-
16
9
=0

設(shè)A(x1,y1),B(x2,y2).
x1+x2=
4k
3(2k2+1)
,x1x2=-
16
9(2k2+1)

假設(shè)在y軸上存在定點(diǎn)M(0,m),滿足題設(shè),則
MA
=(x1,y1-m),
MB
=(x2,y2-m)

MA
MB
=x1x2+(y1-m)(y2-m)=x1x2+y1y2-m(y1+y2)+m2

=x1x2+(kx1-
1
3
)(kx2-
1
3
)-m(kx1-
1
3
+kx2-
1
3
)+m2

=(k2+1)x1x2-k(
1
3
+m)(x1+x2)+m2+
2
3
m+
1
9

=-
16(k2+1)
9(2k2+1)
-k(
1
3
+m)
4k
3(2k2+1)
+m2+
2
3
m+
1
9

=
18(m2-1)k2+(9m2+6m-15)
9(2k2+1)

由假設(shè)得對于任意的k∈R•
MA
MB
=0
恒成立,
m2-1=0
9m2+6m-15=0
解得m=1.
因此,在y軸上存在定點(diǎn)M,使得以AB為直徑的圓恒過這個(gè)點(diǎn),
點(diǎn)M的坐標(biāo)為(0,1)
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).考查了學(xué)生分析問題和推理的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案