(本題滿分12分)
已知函數(shù),(1)求函數(shù)極值.(2)求函數(shù)在上的最大值和最小值.
(1)
-1 |
1 |
||||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
(2)由(1)可知,的極大值為2,極小值為-2
…………………………………………………………10分
∴當(dāng)時,
當(dāng)時,
【解析】
(1)求函數(shù)極值時,令導(dǎo)數(shù)為0,再列極值表,判斷極大值,極小值;
(2)求函數(shù)在上的最大值和最小值,通常計算端點值,,及定義域內(nèi)的極值,,然后比較最值。
解:(1) ∴,
-1 |
1 |
||||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
………………………………………………………………………………………………6分
(2)由(1)可知,的極大值為2,極小值為-2
…………………………………………………………10分
∴當(dāng)時,
當(dāng)時,
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com