某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響。
(Ⅰ)假設(shè)這名射手射擊5次,求恰有2次擊中目標(biāo)的概率
(Ⅱ)假設(shè)這名射手射擊5次,求有3次連續(xù)擊中目標(biāo)。另外2次未擊中目標(biāo)的概率;
(Ⅲ)假設(shè)這名射手射擊3次,每次射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,在3次射擊中,若有2次連續(xù)擊中,而另外1次未擊中,則額外加1分;若3次全擊中,則額外加3分,記為射手射擊3次后的總的分?jǐn)?shù),求的分布列。
,
(1)解:設(shè)為射手在5次射擊中擊中目標(biāo)的次數(shù),則~.在5次射擊中,恰有2次擊中目標(biāo)的概率

(Ⅱ)解:設(shè)“第次射擊擊中目標(biāo)”為事件;“射手在5次射擊中,有3次連續(xù)擊中目標(biāo),另外2次未擊中目標(biāo)”為事件,則

=
=
(Ⅲ)解:由題意可知,的所有可能取值為


=



所以的分布列是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào).若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得分.
(Ⅰ)求拿4次至少得2分的概率;
(Ⅱ)求拿4次所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投次;在處每投進(jìn)一球得分,在處每投進(jìn)一球得分;如果前兩次得分之和超過(guò)分即停止投籃,否則投第三次,某同學(xué)在處的命中率,在處的命中率為,該同學(xué)選擇先在處投一球,以后都在處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
           
0          
2             
   3   
   4   
   5   
        p        
0.03          
   P1              
   P2        
P3          
P4              
(1)求的值;    
(2)求隨機(jī)變量的數(shù)學(xué)期望E

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)甲、乙、丙三人組成一組,參加一個(gè)闖關(guān)游戲團(tuán)體賽,三人各自獨(dú)立闖關(guān),其中甲闖關(guān)成功的概率為,甲、乙都闖關(guān)成功的概率為,乙、丙都闖關(guān)成功的概率為,每人闖關(guān)成功得2分,三人得分之和記為小組團(tuán)體總分.
(1)求乙、丙各自闖關(guān)成功的概率;
(2)求團(tuán)體總分為4分的概率;
(3)若團(tuán)體總分不小于4分,則小組可參加復(fù)賽,求該小組參加復(fù)賽的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某迷宮有三個(gè)通道,進(jìn)入迷宮的每個(gè)人都要經(jīng)過(guò)一扇智能門(mén)。首次到達(dá)此門(mén),系統(tǒng)會(huì)隨機(jī)(即等可能)為你打開(kāi)一個(gè)通道.若是1號(hào)通道,則需要1小時(shí)走出迷宮;若是2號(hào)、3號(hào)通道,則分別需要2小時(shí)、3小時(shí)返回智能門(mén).再次到達(dá)智能門(mén)時(shí),系統(tǒng)會(huì)隨機(jī)打開(kāi)一個(gè)你未到過(guò)的通道,直至走出迷宮為止.
(1)求走出迷宮時(shí)恰好用了1小時(shí)的概率;
(2)求走出迷宮的時(shí)間超過(guò)3小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在上海世界博覽會(huì)開(kāi)展期間,計(jì)劃選派部分高二學(xué)生參加宣傳活動(dòng),報(bào)名參加的學(xué)生需進(jìn)行測(cè)試,共設(shè)4道選擇題,規(guī)定必須答完所有題,且答對(duì)一題得1分,答錯(cuò)一題扣1分,至少得2分才能入選成為宣傳員;甲乙丙三名同學(xué)報(bào)名參加測(cè)試,他們答對(duì)每個(gè)題的概率都為,且每個(gè)人答題相互不受影響.
(1)求學(xué)生甲能通過(guò)測(cè)試成為宣傳員的概率;
(2)求至少有兩名學(xué)生成為宣傳員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)口袋里放了12個(gè)大小完全一樣的小球,其中3個(gè)是紅色的,
4個(gè)是白色的,5個(gè)是藍(lán)色的,現(xiàn)從袋中任意取出4個(gè)小球,求:
(1) 取出的小球的顏色至少是兩種的概率;
(2) 取出的小球的顏色是三種的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
品酒師需定期接受酒味鑒別功能測(cè)試,一種通常采用的測(cè)試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過(guò)一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱(chēng)為一輪測(cè)試。根據(jù)一輪測(cè)試中的兩次排序的偏離程度的高低為其評(píng)為。
現(xiàn)設(shè),分別以表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令

是對(duì)兩次排序的偏離程度的一種描述。
  (Ⅰ)寫(xiě)出的可能值集合;
(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進(jìn)行的三輪測(cè)試中,都有
(i)試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測(cè)試相互獨(dú)立);
(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把定義域?yàn)镽的6個(gè)函數(shù):
,分別寫(xiě)在6張小卡片上,放入盒中.
(1)現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相加得到一個(gè)新函數(shù),求所得函數(shù)是偶函數(shù)的概率;
(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有奇函數(shù)卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案