(本小題滿分14分)

已知函數(shù)

(Ⅰ)請研究函數(shù)的單調性;

(Ⅱ)若函數(shù)有兩個零點,求實數(shù)的取值范圍;

(Ⅲ)若定義在區(qū)間D上的函數(shù)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數(shù)為區(qū)間D上的“凹函數(shù)”.若函

 

數(shù)的最小值為,試判斷函數(shù)是否為“凹函數(shù)”,并對你的判斷加以證明.

 

【答案】

解:(Ⅰ)的定義域為,.

時,為增函數(shù);

時,在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).

(Ⅱ)因為函數(shù)有兩個零點,所以由(1)知.此時方程有兩個實數(shù)根,當時,有

,令,則由,

于是,上遞減,且上遞減,且;

上遞增,且.所以,,

于是,實數(shù)的取值范圍是.

另解:因為函數(shù)有兩個零點,所以由(1)知,且為極小值,根據(jù)圖像,只需要即可.

(Ⅲ)由(1)知, ,其中.

對于任意的,因為

 

=>0,所以.

因此,函數(shù)在其定義域 內是 “凹函數(shù)”.

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案