【題目】如圖,在直四棱柱中,底面是梯形, .
(Ⅰ)求證: ;
(Ⅱ)若,點(diǎn)為線段的中點(diǎn).請?jiān)诰段上找一點(diǎn),使平面,并說明理由.
【答案】(I)見解析(II) 線段的中點(diǎn)即為所求的點(diǎn)
【解析】試題分析:(1)證明線線垂直,可先證明線面垂直平面平面,故;(2)線段的中點(diǎn)即為所求的點(diǎn),根據(jù)平行四邊形,得到線線平行,進(jìn)而得到線面平行。
解析:
(I)在直四棱柱中,
∵平面平面,
∴,
又∵,
∴平面.
∵平面,∴.
(II)線段的中點(diǎn)即為所求的點(diǎn) [或:過作(或者)平行線交于點(diǎn)].
理由如下:取線段的中點(diǎn),連結(jié).
∵, ∴,
又∵, ∴.
又∵在梯形中, ,
∴四邊形是平行四邊形.
∴,
又∵,
∴
∵延長必過,∴四點(diǎn)共面,
∴不在平面內(nèi),即平面,
又∵平面,
∴平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, , , , 且, 分別為的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)若二面角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .
(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實(shí)情,得知齊王第一場必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則( )
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且CO⊥平面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BC,AB=BC=a,a∈[1,3],圓A是以A為圓心、半徑為2的圓,圓B是以B為圓心、半徑為1的圓,設(shè)點(diǎn)E、F分別為圓A、圓B上的動點(diǎn), ∥(且與同向),設(shè)∠BAE=θ(θ∈[0,π]).
(I)當(dāng)a= ,且θ= 時,求的值;
(Ⅱ)用a,θ表示出,并給出一組a,θ的值,使得最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象上所有的點(diǎn)( )
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com