設(shè)數(shù)列的前項(xiàng)和為,
已知,,,是數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;(2)求;
(3)求滿足的最大正整數(shù)的值.
(1);(2);(3)1
解析試題分析:(1)由可構(gòu)造的遞推式,從而得到通項(xiàng)的遞推式,即可得到通項(xiàng)公式.
(2)由(1)以及數(shù)列,可得到數(shù)列為等差數(shù)列,即可求出通項(xiàng)公式,再根據(jù)等差數(shù)列的前n和公式可得及輪.
(3)由(2)可得.所以由通項(xiàng)即.即可求得的值,再解不等式即可得結(jié)論.
試題解析:(1)解:∵當(dāng)時(shí),,
∴
∴
∵,,
∴
∴數(shù)列是以為首項(xiàng),公比為的等比數(shù)列.
∴
(2)解:由(1)得:,
∴
(3)解:
令>2013/2014,解得:n<1007/1006
故滿足條件的最大正整數(shù)的值為1
考點(diǎn):1.數(shù)列的前n項(xiàng)和與通項(xiàng)的關(guān)系.2.等差數(shù)列的求和公式.3.不等式的證明.4.通項(xiàng)的思想解決數(shù)列問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng),等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{an}中,,,
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè)(),記數(shù)列的前k項(xiàng)和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是公差不為零的等差數(shù)列,,且是和的等比中項(xiàng),求:
(1)數(shù)列的通項(xiàng)公式;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)為正數(shù)的數(shù)列中,,對任意的,成等比數(shù)列,公比為;成等差數(shù)列,公差為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列為等差數(shù)列;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列的前項(xiàng)和,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè){an}是公比不為1的等比數(shù)列,其前n項(xiàng)和為Sn,且a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N+,Sk+2,Sk,Sk+1成等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com