(本題滿分12分)已知a為常數(shù),且a≠O,函數(shù)f(x)=ax+axlnx+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時,若直線y=t與曲線y=f(x)(z∈[]有公共點,求t的取值范圍,
解:(1)f(x)=-ax+2+axlnx. 定義域為
f′(x)=alnx. …………………… 2分
因為a≠0,故:
①當(dāng)a>0時,由f′(x)>0得x>1,由f′(x)<0得0<x<1;
②當(dāng)a<0時,由f′(x)>0得0<x<1,由f′(x)<0得x>1.
綜上,當(dāng)a>0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);
當(dāng)a<0時,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞). ……… 6分
(2)當(dāng)a=1時,f(x)=-x+2+xlnx,f′(x)=lnx.
由(1)可得,當(dāng)x在區(qū)間內(nèi)變化時,f′(x),f(x)的變化情況如下表:
x |
1/e |
(1/e,1) |
1 |
(1,e) |
e |
f′(x) |
|
- |
0 |
+ |
|
f(x) |
2-2/e |
單調(diào)遞減 |
極小值1 |
單調(diào)遞增 |
2 |
又2-2/e<2,所以函數(shù)f(x)的值域為[1,2]. …………………… 10分
∵直線y=t與曲線y=f(x)總有公共點;
∴t的取值范圍是. ………………………………… 12分
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com