【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為ρ= 4cosθ,直線l的參數(shù)方程為(t為參數(shù)).

1)求曲線的直角坐標(biāo)方程及直線l的普通方程;

2)若曲線的參數(shù)方程為(α為參數(shù)),曲線上點P的極角為Q為曲線上的動點,求PQ的中點M到直線l距離的最大值.

【答案】1;(2

【解析】

1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)換公式,求得的直角坐標(biāo)方程;消去直線參數(shù)方程中的參數(shù),求得直線的普通方程.

2)求得點的直角坐標(biāo),由此求得點坐標(biāo),利用點到直線距離公式列式,結(jié)合三角函數(shù)最值的求法,求得到直線距離的最大值.

1)由,即.

消去.

2)令,則,所以,對應(yīng)的直角坐標(biāo)為,即.依題意,所以,點到直線的距離為

,從而最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)積極響應(yīng)國家“科技創(chuàng)新”的號召,大力研發(fā)人工智能產(chǎn)品,為了對一批新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示:

試銷單價(百元)

1

2

3

4

5

6

產(chǎn)品銷量(件)

91

86

78

73

70

附:參考公式:,,

參考數(shù)據(jù):,,.

1)求的值;

2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(百元)的線性回歸方程(計算結(jié)果精確到整數(shù)位);

3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),滿足,若,則有( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:

1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù)(其中a是實數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個極值點 ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項的二項式系數(shù)和為256

B.展開式中第6項的系數(shù)最大

C.展開式中存在常數(shù)項

D.展開式中含項的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作一直線與雙曲線相交于、兩點,若中點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知橢圓,直線不過原點且不平行于坐標(biāo)軸,有兩個交點,,線段的中點為

)證明:直線的斜率與的斜率的乘積為定值;

)若過點,延長線段交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)討論函數(shù)的單調(diào)性;

2)證明:.

查看答案和解析>>

同步練習(xí)冊答案