已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
(1)
. (2)
時(shí),函數(shù)
的圖象恒在直線
下方.
第一問中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時(shí),
,故
. …………5分
所以
. …………6分
(2)令
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213900303303.png" style="vertical-align:middle;" />.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點(diǎn)
,
,
當(dāng)
,即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時(shí),同理可知,
在區(qū)間
上遞增,
有
,也不合題意; …………11分
② 若
,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時(shí),函數(shù)
的圖象恒在直線
下方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=x-xlnx ,
,其中
表示函數(shù)f(x)在
x=a處的導(dǎo)數(shù),a為正常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)對(duì)任意的正實(shí)數(shù)
,且
,證明:
(3)對(duì)任意的
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
.
(Ⅰ)如果函數(shù)
在
上是單調(diào)函數(shù),求
的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù)
,使得函數(shù)
在區(qū)間
內(nèi)有兩個(gè)不同的零點(diǎn)?若存在,請(qǐng)求出
的取值范圍;若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
有極值,則導(dǎo)函數(shù)
的圖象不可能是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知函數(shù)
.
(Ⅰ)若
,求實(shí)數(shù)
的取值范圍;
(Ⅱ)判斷函數(shù)
的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,求導(dǎo)函數(shù)
,并確定
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
其中
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ) 討論
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
在
時(shí)有極值10,則實(shí)數(shù)
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)如
,求
的單調(diào)區(qū)間;
(2)若
在
單調(diào)增加,在
單調(diào)減少,
證明: o.
查看答案和解析>>