在△ABC中,B=135°,C=15°,a=5,則此三角形的最大邊長為(  )
分析:由三角形的內(nèi)角和求出A,推出AC邊最長,利用正弦定理,求出最大邊長即可.
解答:解:在△ABC中,B=135°,C=15°,則此三角形的A=30°,且最大邊為AC邊,
由正弦定理
AC
sinB
=
a
sinA
,可以求出AC=
asinB
sinA
=
2
2
1
2
=5
2

故選C.
點(diǎn)評:本題是基礎(chǔ)題,考查三角形中正弦定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B=60°,∠C=45°,AD⊥BC,AD=
3
,自點(diǎn)A在∠BAC內(nèi)任作一條直線AM交于BC于點(diǎn)M,則“BM<1”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知在△ABC中,A=45°,AB=
6
,BC=2,求解此三角形.
(2)在△ABC中,B=45°,C=60°,a=2(1+
3
)
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
cos
x
2
,2cos
x
2
)
,
b
=(2cos
x
2
,-sin
x
2
)
,函數(shù)f(x)=
a
b

(1)設(shè)θ∈[-
π
2
,  
π
2
]
,且f(θ)=
3
+1
,求θ的值;
(2)在△ABC中,AB=1,f(C)=
3
+1
,且△ABC的面積為
3
2
,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點(diǎn)M,求BM<1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B=45°,C=60°,c=1,則最短邊的邊長等于
 

查看答案和解析>>

同步練習(xí)冊答案