(本小題滿分12分)
如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點(diǎn),問AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說明點(diǎn)N的位置;若不存在,試說明理由.
(1).
(2)要證明線面垂直,一般要通過線線垂直來證明,或者面面垂直的性質(zhì)定理。
(3)當(dāng)CF=CN時,MN∥OF.∴CN=
解析試題分析:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.
∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.
設(shè)G為CD的中點(diǎn),則CG=,AG=.
∴,,.
三棱錐D-ABC的表面積為.
(2)取AC的中點(diǎn)H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F為CH的中點(diǎn).
∵E為BC的中點(diǎn),∴EF∥BH.則EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF.
(3)存在這樣的點(diǎn)N,當(dāng)CN=時,MN∥平面DEF.
連CM,設(shè)CM∩DE=O,連OF.由條件知,O為△BCD的重心,CO=CM.
∴當(dāng)CF=CN時,MN∥OF.∴CN=
考點(diǎn):空間點(diǎn)線面的位置關(guān)系
點(diǎn)評:解決該試題的關(guān)鍵是線面平行和線面垂直的運(yùn)用,以及椎體體積的求解運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點(diǎn)H,CH不與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共13分)
如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)E為的中點(diǎn)。
(Ⅰ)求證:
(Ⅱ) 求證:
(Ⅲ)在線段AB上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且=,、、分別為、、的中點(diǎn).
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,四邊形為矩形,平面,為上的點(diǎn),且平面.
(1)求證:;
(2)求三棱錐的體積;
(3)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在四棱錐中,//,, ,平面,.
(Ⅰ)設(shè)平面平面,求證://;
(Ⅱ)求證:平面;
(Ⅲ)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖1,平面四邊形關(guān)于直線對稱,,,.把沿折起(如圖2),使二面角的余弦值等于.
對于圖二,完成以下各小題:
(Ⅰ)求兩點(diǎn)間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com