(本小題滿分12分)
如圖,在三棱錐DABC中,已知△BCD是正三角形,AB⊥平面BCD,ABBCa,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點(diǎn),問AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說明點(diǎn)N的位置;若不存在,試說明理由.

(1)
(2)要證明線面垂直,一般要通過線線垂直來證明,或者面面垂直的性質(zhì)定理。
(3)當(dāng)CFCN時,MNOF.∴CN

解析試題分析:解:(1)∵AB⊥平面BCD,∴ABBC,ABBD

∵△BCD是正三角形,且ABBCa,∴ADAC
設(shè)GCD的中點(diǎn),則CG,AG
,,
三棱錐DABC的表面積為
(2)取AC的中點(diǎn)H,∵ABBC,∴BHAC
AF=3FC,∴FCH的中點(diǎn).
EBC的中點(diǎn),∴EFBH.則EFAC
∵△BCD是正三角形,∴DEBC
AB⊥平面BCD,∴ABDE
ABBCB,∴DE⊥平面ABC.∴DEAC
DEEFE,∴AC⊥平面DEF
(3)存在這樣的點(diǎn)N,當(dāng)CN時,MN∥平面DEF
CM,設(shè)CMDEO,連OF.由條件知,O為△BCD的重心,COCM
∴當(dāng)CFCN時,MNOF.∴CN
考點(diǎn):空間點(diǎn)線面的位置關(guān)系
點(diǎn)評:解決該試題的關(guān)鍵是線面平行和線面垂直的運(yùn)用,以及椎體體積的求解運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點(diǎn)H,CH不與面ABD垂直。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共13分)
如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)E為的中點(diǎn)。

(Ⅰ)求證:     
(Ⅱ) 求證:
(Ⅲ)在線段AB上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且,、分別為、、的中點(diǎn).

(1)求證:∥平面;
(2)求證:⊥平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,四邊形為矩形,平面,上的點(diǎn),且平面.

(1)求證:
(2)求三棱錐的體積;
(3)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
在四棱錐中,//,,平面.

(Ⅰ)設(shè)平面平面,求證://;
(Ⅱ)求證:平面
(Ⅲ)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圖1,平面四邊形關(guān)于直線對稱,,,.把沿折起(如圖2),使二面角的余弦值等于

對于圖二,完成以下各小題:
(Ⅰ)求兩點(diǎn)間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案