【題目】若曲線C上任意一點(diǎn)與直線上任意一點(diǎn)的距離都大于1,則稱曲線C遠(yuǎn)離”直線,在下列曲線中,“遠(yuǎn)離”直線:y=2x的曲線有___________(寫出所有符合條件的曲線的編號)
①曲線C:;②曲線C:;③曲線C:;
④曲線C:;⑤曲線C:.
【答案】②③⑤
【解析】
對于①利用兩條平行線間的距離公式來判斷;對于②,設(shè)出曲線斜率為的切線方程,利用判別式為零求出這條切線方程,再利用兩條平行線間的距離公式來判斷;對于③,利用點(diǎn)到直線距離來判斷.對于④,利用圖像上的特殊點(diǎn)進(jìn)行排除;對于⑤,利用導(dǎo)數(shù)求得曲線上和直線平行的切線的切點(diǎn),然后利用點(diǎn)到直線的距離公式來判斷.
對于①,由兩條平行線間的距離公式得兩直線距離為,不符合題意.對于②,設(shè)與拋物線相切,即,也即,判別式,故切線方程為,與的距離為,符合題意.對于③,方程表示點(diǎn),到直線的距離為符合題意.對于④,取點(diǎn),到直線的距離為不符合題意.對于⑤,令,解得,切點(diǎn)為,到直線的距離為,符合題意.綜上所述,符合題意的有②③⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對網(wǎng)購平臺的商品和服務(wù)的評價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100次成功了的交易,并對這些交易的評價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的交易為40次.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對服務(wù)滿意與對商品滿意之間有關(guān)”?
(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)都滿意的次數(shù)為,求的分布列和數(shù)學(xué)期望.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,則下列結(jié)論正確的是( )
A.直線的傾斜角是B.若直線則
C.點(diǎn)到直線的距離是D.過與直線平行的直線方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,p:,q:.
已知p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
若是成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如下圖所示的頻率分布直方圖.
(I)寫出a的值;
(II)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(III)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線(為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點(diǎn)為曲線上的任意一點(diǎn),為曲線上的任意一點(diǎn),求線段的最小值,并求此時(shí)的的坐標(biāo);
(3)過(2)中求出的點(diǎn)做一直線,交曲線于兩點(diǎn),求面積的最大值(為直角坐標(biāo)系的坐標(biāo)原點(diǎn)),并求出此時(shí)直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com