【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,且過(guò)點(diǎn),曲線(xiàn)的參考方程為為參數(shù)).

(1)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值與最小值;

(2)過(guò)點(diǎn)與直線(xiàn)平行的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.

【答案】(1)2 .

【解析】試題分析:(1)點(diǎn)A的極坐標(biāo)為(4 ),可化為直角坐標(biāo)A(4,4).直線(xiàn)l的極坐標(biāo)方程為ρcosθ)=a,把點(diǎn)A的坐標(biāo)代入直線(xiàn)方程可得a,再利用點(diǎn)到直線(xiàn)的距離公式與三角函數(shù)的單調(diào)性值域及其絕對(duì)值的性質(zhì)即可得出.(2)寫(xiě)出直線(xiàn)的參數(shù)方程,曲線(xiàn)C1的參數(shù)方程為(θ為參數(shù)),化為,聯(lián)立解出,利用t的幾何意義得到

解析:

(1)由直線(xiàn)過(guò)點(diǎn)可得,故,

則易得直線(xiàn)的直角坐標(biāo)方程為.

根據(jù)點(diǎn)到直線(xiàn)的距離方程可得曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離,

.

2)由(1)知直線(xiàn)的傾斜角為,

則直線(xiàn)的參數(shù)方程為為參數(shù)).

又易知曲線(xiàn)的普通方程為.

把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程可得

,依據(jù)參數(shù)的幾何意義可知.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率,且過(guò)拋物線(xiàn)的焦點(diǎn).

1)求拋物線(xiàn)和橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)兩不同點(diǎn),交軸于點(diǎn),已知, ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列各項(xiàng)均為正數(shù), , ,且對(duì)任意恒成立,記的前項(xiàng)和為.

(1)若,求的值;

(2)證明:對(duì)任意正實(shí)數(shù) 成等比數(shù)列;

(3)是否存在正實(shí)數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時(shí)的表達(dá)式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有極值,且在處的切線(xiàn)與直線(xiàn)垂直.

(1)求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得函數(shù)的極小值為.若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下面的流程圖進(jìn)行計(jì)算.若輸出的,則輸入的正實(shí)數(shù)值的個(gè)數(shù)最多為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為

(1)寫(xiě)出直線(xiàn)的普通方程和圓的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線(xiàn)與圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 中, 所對(duì)的邊分別為,且.

(1)求角的大。

(2)若, , 的中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 、是雙曲線(xiàn)上的兩個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,直線(xiàn)與直線(xiàn)斜率之積為2,已知平面內(nèi)存在兩定點(diǎn)、,使得為定值,則該定值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市名男生的身高服從正態(tài)分布.現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分組: ,…, ,得到的頻率分布直方圖如圖所示.

(Ⅰ)試評(píng)估該校高三年級(jí)男生在全市高中男生中的平均身高狀況;

(Ⅱ)求這名男生身高在以上(含)的人數(shù);

(Ⅲ)在這名男生身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全市前名的人數(shù)記力,求的數(shù)學(xué)期望.

參考數(shù)據(jù):若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案