已知函數(shù)是奇函數(shù),是偶函數(shù)。
(1)求的值;
(2)設若對任意恒成立,求實數(shù)的取值范圍。
科目:高中數(shù)學 來源: 題型:解答題
(Ⅰ)已知函數(shù),若存在,使得,則稱是函數(shù)的一個不動點,設二次函數(shù).
(Ⅰ) 當時,求函數(shù)的不動點;
(Ⅱ) 若對于任意實數(shù),函數(shù)恒有兩個不同的不動點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1) 試問函數(shù)f(x)能否在x= 時取得極值?說明理由;
(2) 若a= ,當x∈[,4]時,函數(shù)f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用為C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0x10),若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻,地面利用原地面均不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,屋頂每平方米造價20元.
(1)倉庫面積的最大允許值是多少?
(2)為使面積達到最大而實際投入又不超過預算,正面鐵柵應設計為多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
作為紹興市2013年5.1勞動節(jié)系列活動之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個矩形設計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設花圃占地面積為平方米,矩形一邊的長為米(如圖所示)
(1)試將表示為的函數(shù);
(2)問應該如何設計矩形地塊的邊長,使花圃占地面積取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數(shù),則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產品的成本費P(x)(元)表示成產品件數(shù)x的函數(shù),并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數(shù)量x不超過3000件,且產品能全部銷售,根據(jù)市場調查:每件產品的銷售價Q(x)與產品件數(shù)x有如下關系:,試問生產多少件產品,總利潤最高?(總利潤=總銷售額-總的成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),是定義域為R上的奇函數(shù).
(1)求的值,并證明當時,函數(shù)是R上的增函數(shù);
(2)已知,函數(shù),,求的值域;
(3)若,試問是否存在正整數(shù),使得對恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com