設(shè)等差數(shù)列的前項(xiàng)和為.且
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足:,求數(shù)列的前項(xiàng)和
(1);(2).

試題分析:(1)根據(jù)等差數(shù)列的通項(xiàng)公式、求和公式把已知等式表示成首項(xiàng)與公差的等式, 解方程組求得首項(xiàng)與公差,從而得出數(shù)列的通項(xiàng)公式;(2)有累加原理把表示為,利用則可轉(zhuǎn)化為
,,可用裂項(xiàng)相消法求出數(shù)列數(shù)列的前項(xiàng)和
試題解析:(1),
,解得,.        6分 
(2)由,當(dāng)時(shí),
也成立).
,                                                9分

.                      13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足:a1=20,a2=7,an+2﹣an=﹣2(n∈N*).
(Ⅰ)求a3,a4,并求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}前2n項(xiàng)和為S2n,當(dāng)S2n取最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足:數(shù)列滿足。
(1)若是等差數(shù)列,且的值及的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列,公差不為零,,且成等比數(shù)列;
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列,,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,則等于(  。
A.78 B.84 C.124D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列的前項(xiàng)和為,若,成等差數(shù)列,則其公比為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列的前項(xiàng)和是,若數(shù)列的各項(xiàng)按如下規(guī)則排列:
,
若存在正整數(shù),使,,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知各項(xiàng)為正數(shù)的等差數(shù)列的前項(xiàng)和為,那么的最大值為(    )
A.25 B.50C.75D.100

查看答案和解析>>

同步練習(xí)冊(cè)答案