已知
為常數(shù),
,函數(shù)
,
且方程
有等根.
(1)求
的解析式及值域;
(2)設集合
,
,若
,求實數(shù)
的取值范圍;
(3)是否存在實數(shù)
,使
的定義域和值域分別為
和
?若存在,求出
的值;若不存在,說明理由.
(1)
,值域為
;(2)
;(3)存在
,
使
的定義域和值域分別為
和
.
試題分析:(1)由方程
有兩個相等的實數(shù)根,則
,得
,又由
,可求
,從而求得
,進而得出函數(shù)的值域;
(2)首先對集合
進行分類:①
;②
;然后根據(jù)二次函數(shù)圖像以及根的分布情況,分別確定實數(shù)
的取值范圍;最后將這兩類情況的實數(shù)
的取值范圍取并集即可;
(3)由函數(shù)
的最大值,確定
,從而知當
時,
在
上為增函數(shù).若滿足題設條件的
存在,則
,從而可求
的值.
試題解析:(1)
又方程
,
,即
有等根,
,即
,從而
,
.
又
,值域為
.
(2)
,
①當
時,
,此時
,解得
;
②當
時,設
,對稱軸
,要
,只需
,解得
,
.
綜合①②,得
.
(3)
,則有
,
.
又因為對稱軸
,所以
在
是增函數(shù),即
,
解得
,
.
∴存在
,
使
的定義域和值域分別為
和
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的值域為( )
A.[0,3] | B.[-1,0] | C.[-1,3] | D.[0,2] |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
某同學為研究函數(shù)f(x)=
+
(0≤x≤1)的性質(zhì),構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則AP+PF=f(x).
請你參考這些信息,推知函數(shù)f(x)的極值點是________;函數(shù)f(x)的值域是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,若存在區(qū)間
,使得
=
,則實數(shù)
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)f(x)=
(a≠1).
(1)若a>0,則f(x)的定義域是________;
(2)若f(x)在區(qū)間(0,1]上是減函數(shù),則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的值域為( 。
A.[2,+∞) | B.[1,+∞) |
C.(0,+∞) | D.(0,1] |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的定義域為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
氟利昂是一種重要的化工產(chǎn)品,它在空調(diào)制造業(yè)有著巨9的市場價值.已知它的市場需求量yz(噸)、市場供應量y2(噸)與市場價格十(萬元/噸)分別近似地滿足下列關系:yz=-十+q0,y2=2十-20當yz=y2時的市場價格稱為市場平衡價格.此時的需求量稱為平衡需求量.
(z)求平衡價格和平衡需求量;
(2)科學研究表明,氟利昂是地球9氣層產(chǎn)生臭氧空洞的罪魁禍首,《京都議定書》要求締約國逐年減少其使用量.某政府從宏觀調(diào)控出發(fā),決定對每噸征稅3萬元,求新的市場平衡價格和平衡需求量.
查看答案和解析>>