如圖,點P為矩形ABCD所在平面外一點,PA⊥平面ABCD,E,F(xiàn)分別為線段PB,PC的中點,且AD=4,PA=AB=2
(1)求直線EC和面PAD所成的角
(2)求點P到平面AFD的距離.
分析:(1)建立空間直角坐標(biāo)系,求出平面PAD的法向量,利用向量的夾角公式,即可求直線EC和面PAD所成的角
(2)確定平面AFD的法向量,利用向量公式,可求點P到平面AFD的距離.
解答:解:(1)分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),B(2,0,0),C(2,4,0),D(0,4,0),P(0,0,2)
∴E(1,0,1),F(xiàn)(1,2,1),
EC
=(1,4,-1)

∵AB⊥平面PAD
∴平面PAD的法向量為
AB
=(2,0,0)
設(shè)直線EC與平面PAD所成的角為α,則sinα=
EC
AB
|
EC
||
AB
|
=
2
6

∴直線EC與平面PAD所成的角為arcsin
2
6

(2)由(1)可知
AF
=(1,2,1),
AD
=(0,4,0)

設(shè)平面AFD的法向量為
n
=(x,y,z),點P到平面AFD的距離為d
AF
n
=0
AD
n
=0
,可得
x+2y+z=0
4y=0
,∴取
n
=(1,0,-1)
AP
=(0,0,2)

∴d=
|
AP
n
|
|
n
|
=
2
點評:本題考查線面角,考查點到面的距離的計算,考查向量知識的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,點P為矩形ABCD所在平面外一點,PA⊥平面ABCD,E、F分別為AB、PC的中點.
求證:(1)CD⊥PD;
(2)EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點P為矩形ABCD所在平面外一點,PA⊥平面ABCD,E、F分別為AB、PC的中點.
求證:(1)CD⊥PD;
(2)EF平面PAD.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市南開中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,點P為矩形ABCD所在平面外一點,PA⊥平面ABCD,E,F(xiàn)分別為線段PB,PC的中點,且AD=4,PA=AB=2
(1)求直線EC和面PAD所成的角
(2)求點P到平面AFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市南開中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,點P為矩形ABCD所在平面外一點,PA⊥平面ABCD,E,F(xiàn)分別為線段PB,PC的中點,且AD=4,PA=AB=2
(1)求直線EC和面PAD所成的角
(2)求點P到平面AFD的距離.

查看答案和解析>>

同步練習(xí)冊答案