【題目】已知曲線

(1)若,過點的直線交曲線兩點,且,求直線的方程;

(2)若曲線表示圓時,已知圓與圓交于兩點,若弦所在的直線方程為 為圓的直徑,且圓過原點,求實數(shù)的值.

【答案】(1) (即) ;(2)

【解析】試題分析:1)由已知條件推導出圓心C1,2),2為半徑,由此利用點到直線的距離公式結(jié)合已知條件能求出m=1.
(2)求出圓的方程,兩圓相減得公共弦方程,即得m.

試題解析:

(1)時, 曲線C是以為圓心,2為半徑的圓,

若直線的斜率不存在,顯然不符,

故可直線為: ,即

由題意知,圓心到直線的距離等于,

即:

解得.故的方程 (即)

(2)由曲線C表示圓,即,

所以圓心C(1,2),半徑,則必有

設(shè)過圓心且與垂直的直線為: ,解得;

,所以,圓心

又因為圓過原點,則;

所以圓的方程為,整理得: ;

因為為兩圓的公共弦,兩圓方程相減得:

所以為直線的方程;又因為;所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 ()與所支出的維修費用 (萬元)有如下統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知.

,

(1), ;

(2) 具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(﹣π,0)是它圖象的一個對稱中心;④當 時,它一定取最大值;其中描述正確的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A=a1 , a2 , a3 , …,an , 其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n , 求證: ;
(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列4個函數(shù):① ;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在區(qū)間 上增函數(shù)且以π為周期的函數(shù)是(把所有符合條件的函數(shù)序列號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中錯誤的個數(shù)為:(

的圖像關(guān)于點對稱;②的圖像關(guān)于點對稱;

的圖像關(guān)于直線對稱;④的圖像關(guān)于直線對稱。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)對于函數(shù),如果存在實數(shù)使得,那么稱的生成函數(shù).

1)下面給出兩組函數(shù),是否分別為的生成函數(shù)?并說明理由;

第一組:;

第二組:

2)設(shè),生成函數(shù).若不等式上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=8x的焦點,作傾斜角為45°的直線,則被拋物線截得的弦長為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

同步練習冊答案