【題目】已知函數(shù)fx=a-x2-2ax+lnx,aR

(1)當a=1時,求fx)在區(qū)間[1,e]上的最大值和最小值;

(2)求gx=fx+axx=1處的切線方程;

(3)若在區(qū)間(1,+∞)上,fx)<0恒成立,求實數(shù)a的取值范圍.

【答案】(1)最大值,最小值.(2);(3)

【解析】

(1)求出導函數(shù),明確函數(shù)的單調(diào)性,即可得到fx)在區(qū)間[1,e]上的最大值和最小值;

(2)利用導數(shù)的幾何意義可得切線斜率g1=a結(jié)合點斜式得到切線方程;

(3)求出導函數(shù)fx=.對a分類討論,明確函數(shù)的單調(diào)性,求出函數(shù)的最值即可得到實數(shù)a的取值范圍.

1)當a=1時,=

對于x[1,e]fx≥0恒成立,∴fx)在區(qū)間[1e]上單調(diào)遞增.

fxmax=fe=,

2gx=g1=

gx=2a-1x-a+,g1=a

gx=fx+axx=1處的切線方程是=ax-1),即;

3)函數(shù)fx=a-x2-2ax+lnx

fx==,x >1,

i)當a時,恒有fx)<0

∴函數(shù)fx)在區(qū)間(1,+∞)上單調(diào)遞減.

要滿足在區(qū)間(1,+∞)上,fx)<0恒成立,則f1=-a-≤0即可,解得

∴實數(shù)a的取值范圍是

ii)當a時,令fx=0,解得x1=1

①當1=x1x2時,即時,在區(qū)間(x2,+∞)上有fx)>0,此時fx)在此區(qū)間上單調(diào)遞增,不合題意,應舍去.

②當x2x1=1時,即a≥1,在區(qū)間(1,+∞)上有fx)>0,此時fx)單調(diào)遞增,不合題意.

綜上(i)(ii)可知:實數(shù)a的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】箱中有標號為1,2,3,4,5,67,8且大小相同的8個球,從箱中一次摸出3個球,記下號碼并放回,如果三球號碼之積能被10整除,則獲獎.若有2人參加摸獎,則恰好有2人獲獎的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車尾氣中含有一氧化碳,碳氫化合物等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣之中的污染物會出現(xiàn)遞增的現(xiàn)象,所以國家根據(jù)機動車使用和安全技術(shù)、排放檢驗狀況,對達到報廢標準的機動車實施強制報廢,某環(huán)境組織為了解公眾對機動車強制報廢標準的了解情況,隨機調(diào)查了人,所得數(shù)據(jù)制成如下列聯(lián)表:

1)若從這人中任選人,選到了解強制報廢標準的人的概率為,問是否在犯錯的概率不超過5﹪的前提下認為“機動車強制報廢標準是否了解與性別有關”?

2)該環(huán)保組織從相關部門獲得某型號汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號汽車的使用年限不超過年,可近似認為排放的尾氣中濃度﹪與使用年限線性相關,確定的回歸方程,并預測該型號的汽車使用年排放尾氣中的濃度是使用年的多少倍.

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點M為棱A1B1的中點,則異面直線AMBD所成角的余弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線,),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有四個關于命題的判斷,其中正確的是()

A.命題,是假命題

B.命題,則是真命題

C.命題,的否定是,

D.命題中,若,則是鈍角三角形是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在ABC內(nèi)的P點處有一服務站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運動場所. 現(xiàn)已知點P處的服務站與AC距離為10米,與BC距離為100. 米,試問取何值時,運動場所面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記拋物線的焦點為,點在拋物線上,,斜率為的直線與拋物線交于兩點.

1)求的最小值;

2)若,直線的斜率都存在,且;探究:直線是否過定點,若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)已知,當時,恒成立,求實數(shù)的取值范圍;

(Ⅲ)對于在中的任意一個常數(shù),是否存在正數(shù),使得,請說明理由。

查看答案和解析>>

同步練習冊答案