設(shè)函數(shù)f (x)=x3+ax2-(2a+3)x+a2,a∈R.
(Ⅰ) 若x=1是f (x)的極大值點,求實數(shù)a的取值范圍;
(Ⅱ) 設(shè)函數(shù)g(x)=bx2-(2b+1)x+ln x (b≠0,b∈R),若函數(shù)f (x)有極大值,且g(x)的極大值點與f (x)的極大值點相同.當(dāng)a>-3時,求證:g(x)的極小值小于-1.
分析:(I)求出f(x)的導(dǎo)數(shù),根據(jù)x=1是f (x)的極大值點,令導(dǎo)函數(shù)等于0的另一個根大于極大值點x=1,列出不等式,求出實數(shù)a的取值范圍.
(II)求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)為0,求出兩個根,據(jù)已知條件,兩個根不等,根據(jù)a的范圍,求出f(x)的極大值,求出g(x)的導(dǎo)數(shù),求出g(x)的極大值,根據(jù)已知列出方程,求出極小值,得證.
解答:解:(Ⅰ) f′(x)=3x
2+2ax-(2a+3)=(x-1)(3x+2a+3).
由于x=1是f (x)的極大值點,
故
->1,
即a<-3
(Ⅱ) f′(x)=3x
2+2ax-(2a+3)=(x-1)(3x+2a+3).
g′(x)=
+2bx-(2b+1)=
.
由于函數(shù)f (x)有極大值,故
-≠1,即a≠-3.
當(dāng) a>-3時,即
-<1,則f (x)的極大值點
x=-,
所以,g(x)的極大值點
x=,極小值點為x=1.
所以,
?,
此時,g(x)的極小值g(1)=b-(2b+1)=-1-b<-
<-1.
點評:利用導(dǎo)數(shù)求函數(shù)的極值時,令導(dǎo)數(shù)等于0,然后判斷根左右兩邊的導(dǎo)函數(shù)符號,導(dǎo)函數(shù)符號先正后負,根為極大值;導(dǎo)函數(shù)符號先負后正,根為極小值.