設數列{an}中,若an+1=an+an+2,(n∈N*),則稱數列{an}為“凸數列”.
(1)設數列{an}為“凸數列”,若a1=1,a2=-2,試寫出該數列的前6項,并求出該6項之和;
(2)在“凸數列”{an}中,求證:an+6=an,n∈N*;
(3)設a1=a,a2=b,若數列{an}為“凸數列”,求數列前n項和Sn.
【答案】
分析:(1)分別令n=2,3,4,5,由題設條件能夠得到a
1,a
2,a
3,a
4,a
5,a
6的值,從而能夠求出S
6.
(2)由條件得
,a
n+3=-a
n,由此知a
n+6=-a
n+3=a
n.
(3)由題設條件能夠知a
1=a,a
2=b,a
3=b-a,a
4=-a,a
5=-b,a
6=a-b.S
6=0.再由S
6n+k=S
k,n∈N
*,能夠導出數列前n項和S
n.
解答:解:(1)a
1=1,a
2=-2,a
3=-3,a
4=-1,a
5=2,a
6=3,
∴S
6=0.(4分)
(2)由條件得
,
∴a
n+3=-a
n,(6分)∴a
n+6=-a
n+3=a
n,即a
n+6=a
n.(8分)
(3)a
1=a,a
2=b,a
3=b-a,a
4=-a,a
5=-b,a
6=a-b.
∴S
6=0.(10分)
由(2)得S
6n+k=S
k,n∈N
*,k=1,,6.(12分)
∴
,k∈N
*(14分)
點評:本題考查數列的性質和應用,解題時要認真審題,仔細解答,注意數列遞推式的靈活運用.