已知橢圓的左、右焦點和短軸的兩個端點構成邊長為2的正方形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當最大時,求直線的方程.

 

【答案】

(Ⅰ)橢圓的方程為;(Ⅱ)直線的方程為

【解析】

試題分析:(Ⅰ)由已知,橢圓的左、右焦點和短軸的兩個端點構成邊長為2的正方形,所以,利用,可得,又橢圓的焦點在軸上,從而得橢圓的方程;(Ⅱ)需分直線的斜率是否為0討論.①當直線的斜率為0時,則;②當直線的斜率不為0時,設,,直線的方程為,將代入,整理得.利用韋達定理列出.結合,,列出關于的函數(shù),應用均值不等式求其最值,從而得的值,最后求出直線的方程.

試題解析:(Ⅰ)由已知得(2分),又,∴橢圓方程為(4分)

(Ⅱ)①當直線的斜率為0時,則;        6分

②當直線的斜率不為0時,設,,直線的方程為,

代入,整理得

,.      8分

,,

所以,=

 10分.

,則

所以當且僅當,即時,取等號. 由①②得,直線的方程為.13分.

考點:1.橢圓方程的求法;2.直線和橢圓位置關系中最值問題;3.均值不等式.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省高三第一次月考文科數(shù)學 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江二中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

同步練習冊答案