設函數(shù)
(I)求函數(shù)的單調區(qū)間;
(II)若不等式()在上恒成立,求的最大值.
(1)函數(shù)的增區(qū)間為,減區(qū)間為;(2)的最大值為3.
【解析】
試題分析:本題主要考查導數(shù)的運算、利用導數(shù)研究函數(shù)的單調性、利用導數(shù)研究函數(shù)的極值與最值、恒成立問題等數(shù)學知識,考查綜合分析問題解決問題的能力和計算能力,考查函數(shù)思想和分類討論思想.第一問,首先求函數(shù)的定義域,利用為增函數(shù),為減函數(shù),通過求導,解不等式求出單調區(qū)間,注意單調區(qū)間必須在定義域內;第二問,因為不等式恒成立,所以轉化表達式,此時就轉化成了求函數(shù)的最小值問題;法二,將恒成立問題轉化為,即轉化為求函數(shù)的最小值,通過分類討論思想求函數(shù)的最小值,只需最小值大于0即可.
試題解析:(I)函數(shù)的定義域為.
由,得;由,得
所以函數(shù)的增區(qū)間為,減區(qū)間為. 4分
(II)(解法一)由已知在上恒成立.
則,令
則,設
則,所以函數(shù)在單調遞增. 6分
而
由零點存在定理,存在,使得,即,
又函數(shù)在單調遞增,
所以當時,;當時,.
從而當時,;當時,
所以在上的最小值
因此在上恒成立等價于 10分
由,知,所以的最大值為3. 12分
解法二:由題意
在上恒成立,
設
6分
1.當時,則,∴單增,,即恒成立. 8分
2.當時,則在單減,單增,
∴最小值為,只需即可,即, 10分
設
,單減,
則,,,
∴. 12分
考點:1.利用導數(shù)研究函數(shù)的單調性;2.利用導數(shù)求函數(shù)的最值;3.恒成立問題.
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三12月月考試題文科數(shù)學 題型:解答題
(本小題滿分12分)已知向量
設函數(shù)
(I)求函數(shù)的最大值及此時x的集合;
(Ⅱ)在A為銳角的三角形ABC中,角A、B、C的對邊分別為a、b、c,且
的面積為3,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年河北省高二第二學期期末數(shù)學(理)試題 題型:解答題
(本小題滿分10分)
已知函數(shù)
(I)求函數(shù)的最小值和最小正周期;
(II)設的內角的對邊分別為,且,若向量與向量共線,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com