【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,求證:對任意的.

【答案】(1上是單調(diào)遞減的函數(shù);(2)詳見解析.

【解析】試題分析:(1)求導,根據(jù)導函數(shù)的取值情況分析的單調(diào)性;(2)令,求導,分析其單調(diào)性,進而研究其取值情況,問題等價于證明即可得證..

試題解析:(1)當時, , ,

,時, ,上是單調(diào)遞減的函數(shù);(2)設, , ,令, ,當時, ,有上是減函數(shù),即上是減函數(shù),

, 存在唯一的,使得時, , 在區(qū)間單調(diào)遞增;

時, , 在區(qū)間單調(diào)遞減,因此在區(qū)間

,

,,將其代入上式得

,

, ,則,即有,

的對稱軸,函數(shù)在區(qū)間上是增函數(shù),且

,( ),即任意, ,,因此任意, .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知底面,異面直線所成角等于.

(1)求證: 平面平面;

(2)求直線和平面所成角的正弦值;

(3) 在棱上是否存在一點,使得平面與平面所成銳二面角的正切值為?若存在,指出點在棱上的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n﹣1)a2+…+2an1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求數(shù)列{an}的首項和公比;
(2)當m=1時,求bn;
(3)設Sn為數(shù)列{an}的前n項和,若對于任意的正整數(shù)n,都有Sn∈[1,3],求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【河北省衡水中學2017屆高三上學期五調(diào)】已知橢圓,圓的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面, 分別為棱的中點.

(1)求證: 平面;

2)(文科)求三棱錐的體積;

(理科)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點作曲線的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=x2+2mx+
(1)用定義法證明f(x)在R上是增函數(shù);
(2)求出所有滿足不等式f(2a﹣a2)+f(3)>0的實數(shù)a構(gòu)成的集合;
(3)對任意的實數(shù)x1∈[﹣1,1],都存在一個實數(shù)x2∈[﹣1,1],使得f(x1)=g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線為參數(shù)),將上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.

(1)試寫出曲線的極坐標方程與曲線的參數(shù)方程;

(2)在曲線上求一點,使點到直線的距離最小,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓, 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

同步練習冊答案